亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess many exotic physical properties, the very limited availability of known altermagnetic materials (e.g., 14 confirmed materials) hinders the study of such properties. Hence, discovering more types of altermagnetic materials is crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the next-generation information technologies, e.g., storage devices and high-sensitivity sensors. Here, we report 25 new altermagnetic materials that cover metals, semiconductors, and insulators, discovered by an AI search engine unifying symmetry analysis, graph neural network pre-training, optimal transport theory, and first-principles electronic structure calculation. The wide range of electronic structural characteristics reveals that various novel physical properties manifest in these newly discovered altermagnetic materials, e.g., anomalous Hall effect, anomalous Kerr effect, and topological property. Noteworthy, we discovered 8 i-wave altermagnetic materials for the first time. Overall, the AI search engine performs much better than human experts and suggests a set of new altermagnetic materials with unique properties, outlining its potential for accelerated discovery of the materials with targeting properties.

相關內容

Website reliability labels underpin almost all research in misinformation detection. However, misinformation sources often exhibit transient behavior, which makes many such labeled lists obsolete over time. We demonstrate that Search Engine Optimization (SEO) attributes provide strong signals for predicting news site reliability. We introduce a novel attributed webgraph dataset with labeled news domains and their connections to outlinking and backlinking domains. We demonstrate the success of graph neural networks in detecting news site reliability using these attributed webgraphs, and show that our baseline news site reliability classifier outperforms current SoTA methods on the PoliticalNews dataset, achieving an F1 score of 0.96. Finally, we introduce and evaluate a novel graph-based algorithm for discovering previously unknown misinformation news sources.

This work deals with the isogeometric Galerkin discretization of the eigenvalue problem related to the Laplace operator subject to homogeneous Dirichlet boundary conditions on bounded intervals. This paper uses GLT theory to study the behavior of the gap of discrete spectra toward the uniform gap condition needed for the uniform boundary observability/controllability problems. The analysis refers to a regular $B$-spline basis and concave or convex reparametrizations. Under suitable assumptions on the reparametrization transformation, we prove that structure emerges within the distribution of the eigenvalues once we reframe the problem into GLT-symbol analysis. We also demonstrate numerically, that the necessary average gap condition proposed in \cite{bianchi2018spectral} is not equivalent to the uniform gap condition. However, by improving the result in \cite{bianchi2021analysis} we construct sufficient criteria that guarantee the uniform gap property.

Background: Identifying and characterising the longitudinal patterns of multimorbidity associated with stroke is needed to better understand patients' needs and inform new models of care. Methods: We used an unsupervised patient-oriented clustering approach to analyse primary care electronic health records (EHR) of 30 common long-term conditions (LTC), in patients with stroke aged over 18, registered in 41 general practices in south London between 2005 and 2021. Results: Of 849,968 registered patients, 9,847 (1.16%) had a record of stroke, 46.5% were female and median age at record was 65.0 year (IQR: 51.5 to 77.0). The median number of LTCs in addition to stroke was 3 (IQR: from 2 to 5). Patients were stratified in eight clusters. These clusters revealed contrasted patterns of multimorbidity, socio-demographic characteristics (age, gender and ethnicity) and risk factors. Beside a core of 3 clusters associated with conventional stroke risk-factors, minor clusters exhibited less common but recurrent combinations of LTCs including mental health conditions, asthma, osteoarthritis and sickle cell anaemia. Importantly, complex profiles combining mental health conditions, infectious diseases and substance dependency emerged. Conclusion: This patient-oriented approach to EHRs uncovers the heterogeneity of profiles of multimorbidity and socio-demographic characteristics associated with stroke. It highlights the importance of conventional stroke risk factors as well as the association of mental health conditions in complex profiles of multimorbidity displayed in a significant proportion of patients. These results address the need for a better understanding of stroke-associated multimorbidity and complexity to inform more efficient and patient-oriented healthcare models.

Lattices with minimal normalized second moments are designed using a new numerical optimization algorithm. Starting from a random lower-triangular generator matrix and applying stochastic gradient descent, all elements are updated towards the negative gradient, which makes it the most efficient algorithm proposed so far for this purpose. A graphical illustration of the theta series, called theta image, is introduced and shown to be a powerful tool for converting numerical lattice representations into their underlying exact forms. As a proof of concept, optimized lattices are designed in dimensions up to 16. In all dimensions, the algorithm converges to either the previously best known lattice or a better one. The dual of the 15-dimensional laminated lattice is conjectured to be optimal in its dimension.

Datasets containing both categorical and continuous variables are frequently encountered in many areas, and with the rapid development of modern measurement technologies, the dimensions of these variables can be very high. Despite the recent progress made in modelling high-dimensional data for continuous variables, there is a scarcity of methods that can deal with a mixed set of variables. To fill this gap, this paper develops a novel approach for classifying high-dimensional observations with mixed variables. Our framework builds on a location model, in which the distributions of the continuous variables conditional on categorical ones are assumed Gaussian. We overcome the challenge of having to split data into exponentially many cells, or combinations of the categorical variables, by kernel smoothing, and provide new perspectives for its bandwidth choice to ensure an analogue of Bochner's Lemma, which is different to the usual bias-variance tradeoff. We show that the two sets of parameters in our model can be separately estimated and provide penalized likelihood for their estimation. Results on the estimation accuracy and the misclassification rates are established, and the competitive performance of the proposed classifier is illustrated by extensive simulation and real data studies.

We introduce a pressure robust Finite Element Method for the linearized Magnetohydrodynamics equations in three space dimensions, which is provably quasi-robust also in the presence of high fluid and magnetic Reynolds numbers. The proposed scheme uses a non-conforming BDM approach with suitable DG terms for the fluid part, combined with an $H^1$-conforming choice for the magnetic fluxes. The method introduces also a specific CIP-type stabilization associated to the coupling terms. Finally, the theoretical result are further validated by numerical experiments.

Proactively and naturally guiding the dialog from the non-recommendation context (e.g., Chit-chat) to the recommendation scenario (e.g., Music) is crucial for the Conversational Recommender System (CRS). Prior studies mainly focus on planning the next dialog goal~(e.g., chat on a movie star) conditioned on the previous dialog. However, we find the dialog goals can be simultaneously observed at different levels, which can be utilized to improve CRS. In this paper, we propose Dual-space Hierarchical Learning (DHL) to leverage multi-level goal sequences and their hierarchical relationships for conversational recommendation. Specifically, we exploit multi-level goal sequences from both the representation space and the optimization space. In the representation space, we propose the hierarchical representation learning where a cross attention module derives mutually enhanced multi-level goal representations. In the optimization space, we devise the hierarchical weight learning to reweight lower-level goal sequences, and introduce bi-level optimization for stable update. Additionally, we propose a soft labeling strategy to guide optimization gradually. Experiments on two real-world datasets verify the effectiveness of our approach. Code and data are available here.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司