Recent advancements in Augmented Reality (AR) research have highlighted the critical role of context awareness in enhancing interface effectiveness and user experience. This underscores the need for intelligent AR (iAR) interfaces that dynamically adapt across various contexts to provide optimal experiences. In this paper, we (a) propose a comprehensive framework for context-aware inference and adaptation in iAR, (b) introduce a taxonomy that describes context through quantifiable input data, and (c) present an architecture that outlines the implementation of our proposed framework and taxonomy within iAR. Additionally, we present an empirical AR experiment to observe user behavior and record user performance, context, and user-specified adaptations to the AR interfaces within a context-switching scenario. We (d) explore the nuanced relationships between context and user adaptations in this scenario and discuss the significance of our framework in identifying these patterns. This experiment emphasizes the significance of context-awareness in iAR and provides a preliminary training dataset for this specific Scenario.
The detection of scams within Ethereum smart contracts is a critical challenge due to their increasing exploitation for fraudulent activities, leading to significant financial and reputational damages. Existing detection methods often rely on contract code analysis or manually extracted features, which suffer from scalability and adaptability limitations. In this study, we introduce an innovative method that leverages graph representation learning to examine transaction patterns and identify fraudulent contracts. By transforming Ethereum transaction data into graph structures and employing advanced machine learning models, we achieve robust classification performance. Our method addresses label imbalance through SMOTE-ENN techniques and evaluates models like Multi-Layer Perceptron (MLP) and Graph Convolutional Networks (GCN). Experimental results indicate that the MLP model surpasses the GCN in this context, with real-world evaluations aligning closely with domain-specific analyses. This study provides a scalable and effective solution for enhancing trust and security in the Ethereum ecosystem.
This paper shows that the semantics of programs with aggregates implemented by the solvers clingo and dlv can be characterized as extended First-Order formulas with intensional functions in the logic of Here-and-There. Furthermore, this characterization can be used to study the strong equivalence of programs with aggregates under either semantics. We also present a transformation that reduces the task of checking strong equivalence to reasoning in classical First-Order logic, which serves as a foundation for automating this procedure.
Large language models (LLMs) frequently generate confident yet inaccurate responses, introducing significant risks for deployment in safety-critical domains. We present a novel approach to detecting model hallucination through systematic analysis of information flow across model layers when processing inputs with insufficient or ambiguous context. Our investigation reveals that hallucination manifests as usable information deficiencies in inter-layer transmissions. While existing approaches primarily focus on final-layer output analysis, we demonstrate that tracking cross-layer information dynamics ($\mathcal{L}$I) provides robust indicators of model reliability, accounting for both information gain and loss during computation. $\mathcal{L}$I improves model reliability by immediately integrating with universal LLMs without additional training or architectural modifications.
We present Bluebell, a program logic for reasoning about probabilistic programs where unary and relational styles of reasoning come together to create new reasoning tools. Unary-style reasoning is very expressive and is powered by foundational mechanisms to reason about probabilistic behaviour like independence and conditioning. The relational style of reasoning, on the other hand, naturally shines when the properties of interest compare the behaviour of similar programs (e.g. when proving differential privacy) managing to avoid having to characterize the output distributions of the individual programs. So far, the two styles of reasoning have largely remained separate in the many program logics designed for the deductive verification of probabilistic programs. In Bluebell, we unify these styles of reasoning through the introduction of a new modality called "joint conditioning" that can encode and illuminate the rich interaction between conditional independence and relational liftings; the two powerhouses from the two styles of reasoning.
This short communication shows that the Chessography encryption scheme is incorrect, redundant, and the the security claims based on the complexity of chess games are unjustified. It also demonstrates an insufficient randomness in the final chess game positions, which could be of separate interest.
Artificial Intelligence has proven to be a transformative tool for advancing scientific research across a wide range of disciplines. However, a significant gap still exists between AI and scientific communities, limiting the full potential of AI methods in driving broad scientific discovery. Existing efforts in bridging this gap have often relied on qualitative examination of small samples of literature, offering a limited perspective on the broader AI4Science landscape. In this work, we present a large-scale analysis of the AI4Science literature, starting by using large language models to identify scientific problems and AI methods in publications from top science and AI venues. Leveraging this new dataset, we quantitatively highlight key disparities between AI methods and scientific problems in this integrated space, revealing substantial opportunities for deeper AI integration across scientific disciplines. Furthermore, we explore the potential and challenges of facilitating collaboration between AI and scientific communities through the lens of link prediction. Our findings and tools aim to promote more impactful interdisciplinary collaborations and accelerate scientific discovery through deeper and broader AI integration.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.
Interest point descriptors have fueled progress on almost every problem in computer vision. Recent advances in deep neural networks have enabled task-specific learned descriptors that outperform hand-crafted descriptors on many problems. We demonstrate that commonly used metric learning approaches do not optimally leverage the feature hierarchies learned in a Convolutional Neural Network (CNN), especially when applied to the task of geometric feature matching. While a metric loss applied to the deepest layer of a CNN, is often expected to yield ideal features irrespective of the task, in fact the growing receptive field as well as striding effects cause shallower features to be better at high precision matching tasks. We leverage this insight together with explicit supervision at multiple levels of the feature hierarchy for better regularization, to learn more effective descriptors in the context of geometric matching tasks. Further, we propose to use activation maps at different layers of a CNN, as an effective and principled replacement for the multi-resolution image pyramids often used for matching tasks. We propose concrete CNN architectures employing these ideas, and evaluate them on multiple datasets for 2D and 3D geometric matching as well as optical flow, demonstrating state-of-the-art results and generalization across datasets.