N:M Structured sparsity has garnered significant interest as a result of relatively modest overhead and improved efficiency. Additionally, this form of sparsity holds considerable appeal for reducing the memory footprint owing to their modest representation overhead. There have been efforts to develop training recipes for N:M structured sparsity, they primarily focus on low-sparsity regions ($\sim$50\%). Nonetheless, performance of models trained using these approaches tends to decline when confronted with high-sparsity regions ($>$80\%). In this work, we study the effectiveness of existing sparse training recipes at \textit{high-sparsity regions} and argue that these methods fail to sustain the model quality on par with low-sparsity regions. We demonstrate that the significant factor contributing to this disparity is the presence of elevated levels of induced noise in the gradient magnitudes. To mitigate this undesirable effect, we employ decay mechanisms to progressively restrict the flow of gradients towards pruned elements. Our approach improves the model quality by up to 2$\%$ and 5$\%$ in vision and language models at high sparsity regime, respectively. We also evaluate the trade-off between model accuracy and training compute cost in terms of FLOPs. At iso-training FLOPs, our method yields better performance compared to conventional sparse training recipes, exhibiting an accuracy improvement of up to 2$\%$. The source code is available at //github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity.
Large language models (LLMs) have gained popularity recently due to their outstanding performance in various downstream Natural Language Processing (NLP) tasks. However, low-resource languages are still lagging behind current state-of-the-art (SOTA) developments in the field of NLP due to insufficient resources to train LLMs. Ethiopian languages exhibit remarkable linguistic diversity, encompassing a wide array of scripts, and are imbued with profound religious and cultural significance. This paper introduces EthioLLM -- multilingual large language models for five Ethiopian languages (Amharic, Ge'ez, Afan Oromo, Somali, and Tigrinya) and English, and Ethiobenchmark -- a new benchmark dataset for various downstream NLP tasks. We evaluate the performance of these models across five downstream NLP tasks. We open-source our multilingual language models, new benchmark datasets for various downstream tasks, and task-specific fine-tuned language models and discuss the performance of the models. Our dataset and models are available at the //huggingface.co/EthioNLP repository.
Analog Compute-in-Memory (CiM) accelerators are increasingly recognized for their efficiency in accelerating Deep Neural Networks (DNN). However, their dependence on Analog-to-Digital Converters (ADCs) for accumulating partial sums from crossbars leads to substantial power and area overhead. Moreover, the high area overhead of ADCs constrains the throughput due to the limited number of ADCs that can be integrated per crossbar. An approach to mitigate this issue involves the adoption of extreme low-precision quantization (binary or ternary) for partial sums. Training based on such an approach eliminates the need for ADCs. While this strategy effectively reduces ADC costs, it introduces the challenge of managing numerous floating-point scale factors, which are trainable parameters like DNN weights. These scale factors must be multiplied with the binary or ternary outputs at the columns of the crossbar to ensure system accuracy. To that effect, we propose an algorithm-hardware co-design approach, where DNNs are first trained with quantization-aware training. Subsequently, we introduce HCiM, an ADC-Less Hybrid Analog-Digital CiM accelerator. HCiM uses analog CiM crossbars for performing Matrix-Vector Multiplication operations coupled with a digital CiM array dedicated to processing scale factors. This digital CiM array can execute both addition and subtraction operations within the memory array, thus enhancing processing speed. Additionally, it exploits the inherent sparsity in ternary quantization to achieve further energy savings. Compared to an analog CiM baseline architecture using 7 and 4-bit ADC, HCiM achieves energy reductions up to 28% and 12%, respectively
The 6TiSCH protocol stack was proposed to ensure high-performance communications in the Industrial Internet of Things (IIoT). However, the lack of sufficient time slots for nodes outside the 6TiSCH's Destination Oriented Directed Acyclic Graph (DODAG) to transmit their Destination Advertisement Object (DAO) messages and cell reservation requests significantly hinders their integration into the DODAG. This oversight not only prolongs the device's join time but also increases energy consumption during the network formation phase. Moreover, challenges emerge due to the substantial number of control packets employed by both the 6TiSCH Scheduling Function (SF) and routing protocol (RPL), thus draining more energy resources, increasing medium contention, and decreasing spatial reuse. Furthermore, an SF that overlooks previously allocated slots when assigning new ones to the same node may increase jitter, and more complications ensue when it neglects the state of the TSCH queue, thus leading to packet dropping due to queue saturation. Additional complexity arises when the RPL disregards the new parent's schedule saturation during parent switching, which results in inefficient energy and time usage. To address these issues, we introduce in this paper novel mechanisms, strategically situated at the intersection of SF and RPL that are designed to balance the control packet distribution and adaptively manage parent switching. Our proposal, implemented within the 6TiSCH simulator, demonstrates significant improvements across vital performance metrics, such as node's joining time, jitter, latency, energy consumption, and amount of traffic, in comparison to the conventional 6TiSCH benchmark.
Customization generation techniques have significantly advanced the synthesis of specific concepts across varied contexts. Multi-concept customization emerges as the challenging task within this domain. Existing approaches often rely on training a Low-Rank Adaptations (LoRA) fusion matrix of multiple LoRA to merge various concepts into a single image. However, we identify this straightforward method faces two major challenges: 1) concept confusion, which occurs when the model cannot preserve distinct individual characteristics, and 2) concept vanishing, where the model fails to generate the intended subjects. To address these issues, we introduce LoRA-Composer, a training-free framework designed for seamlessly integrating multiple LoRAs, thereby enhancing the harmony among different concepts within generated images. LoRA-Composer addresses concept vanishing through Concept Injection Constraints, enhancing concept visibility via an expanded cross-attention mechanism. To combat concept confusion, Concept Isolation Constraints are introduced, refining the self-attention computation. Furthermore, Latent Re-initialization is proposed to effectively stimulate concept-specific latent within designated regions. Our extensive testing showcases a notable enhancement in LoRA-Composer's performance compared to standard baselines, especially when eliminating the image-based conditions like canny edge or pose estimations. Code is released at //github.com/Young98CN/LoRA\_Composer.
Large Language Models (LLMs) demonstrate superior performance in generative scenarios and have attracted widespread attention. Among them, stylized dialogue generation is essential in the context of LLMs for building intelligent and engaging dialogue agent. However the ability of LLMs is data-driven and limited by data bias, leading to poor performance on specific tasks. In particular, stylized dialogue generation suffers from a severe lack of supervised data. Furthermore, although many prompt-based methods have been proposed to accomplish specific tasks, their performance in complex real-world scenarios involving a wide variety of dialog styles further enhancement. In this work, we first introduce a stylized dialogue dataset StyleEval with 38 styles by leveraging the generative power of LLMs comprehensively, which has been carefully constructed with rigorous human-led quality control. Based on this, we propose the stylized dialogue framework StyleChat via recitation-augmented memory strategy and multi-task style learning strategy to promote generalization ability. To evaluate the effectiveness of our approach, we created a test benchmark that included both a generation task and a choice task to comprehensively evaluate trained models and assess whether styles and preferences are remembered and understood. Experimental results show that our proposed framework StyleChat outperforms all the baselines and helps to break the style boundary of LLMs.
The ever-increasing number of threats and the existing diversity of information sources pose challenges for Computer Emergency Response Teams (CERTs). To respond to emerging threats, CERTs must gather information in a timely and comprehensive manner. But the volume of sources and information leads to information overload. This paper contributes to the question of how to reduce information overload for CERTs. We propose clustering incoming information as scanning this information is one of the most tiresome, but necessary, manual steps. Based on current studies, we establish conditions for such a framework. Different types of evaluation metrics are used and selected in relation to the framework conditions. Furthermore, different document embeddings and distance measures are evaluated and interpreted in combination with clustering methods. We use three different corpora for the evaluation, a novel ground truth corpus based on threat reports, one security bug report (SBR) corpus, and one with news articles. Our work shows, it is possible to reduce the information overload by up to 84.8% with homogeneous clusters. A runtime analysis of the clustering methods strengthens the decision of selected clustering methods. The source code and dataset will be made publicly available after acceptance.
The adoption of Deep Neural Networks (DNNs) has greatly benefited Natural Language Processing (NLP) during the past decade. However, the demands of long document analysis are quite different from those of shorter texts, while the ever increasing size of documents uploaded online renders automated understanding of lengthy texts a critical issue. Relevant applications include automated Web mining, legal document review, medical records analysis, financial reports analysis, contract management, environmental impact assessment, news aggregation, etc. Despite the relatively recent development of efficient algorithms for analyzing long documents, practical tools in this field are currently flourishing. This article serves as an entry point into this dynamic domain and aims to achieve two objectives. First of all, it provides an introductory overview of the relevant neural building blocks, serving as a concise tutorial for the field. Secondly, it offers a brief examination of the current state-of-the-art in two key long document analysis tasks: document classification and document summarization. Sentiment analysis for long texts is also covered, since it is typically treated as a particular case of document classification. Consequently, this article presents an introductory exploration of document-level analysis, addressing the primary challenges, concerns, and existing solutions. Finally, it offers a concise definition of "long text/document", presents an original overarching taxonomy of common deep neural methods for long document analysis and lists publicly available annotated datasets that can facilitate further research in this area.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.