Factored feature volumes offer a simple way to build more compact, efficient, and intepretable neural fields, but also introduce biases that are not necessarily beneficial for real-world data. In this work, we (1) characterize the undesirable biases that these architectures have for axis-aligned signals -- they can lead to radiance field reconstruction differences of as high as 2 PSNR -- and (2) explore how learning a set of canonicalizing transformations can improve representations by removing these biases. We prove in a two-dimensional model problem that simultaneously learning these transformations together with scene appearance succeeds with drastically improved efficiency. We validate the resulting architectures, which we call TILTED, using image, signed distance, and radiance field reconstruction tasks, where we observe improvements across quality, robustness, compactness, and runtime. Results demonstrate that TILTED can enable capabilities comparable to baselines that are 2x larger, while highlighting weaknesses of neural field evaluation procedures.
Causal inference from observational data is crucial for many disciplines such as medicine and economics. However, sharp bounds for causal effects under relaxations of the unconfoundedness assumption (causal sensitivity analysis) are subject to ongoing research. So far, works with sharp bounds are restricted to fairly simple settings (e.g., a single binary treatment). In this paper, we propose a unified framework for causal sensitivity analysis under unobserved confounding in various settings. For this, we propose a flexible generalization of the marginal sensitivity model (MSM) and then derive sharp bounds for a large class of causal effects. This includes (conditional) average treatment effects, effects for mediation analysis and path analysis, and distributional effects. Furthermore, our sensitivity model is applicable to discrete, continuous, and time-varying treatments. It allows us to interpret the partial identification problem under unobserved confounding as a distribution shift in the latent confounders while evaluating the causal effect of interest. In the special case of a single binary treatment, our bounds for (conditional) average treatment effects coincide with recent optimality results for causal sensitivity analysis. Finally, we propose a scalable algorithm to estimate our sharp bounds from observational data.
Recently, SyncMap pioneered an approach to learn complex structures from sequences as well as adapt to any changes in underlying structures. This is achieved by using only nonlinear dynamical equations inspired by neuron group behaviors, i.e., without loss functions. Here we propose Symmetrical SyncMap that goes beyond the original work to show how to create dynamical equations and attractor-repeller points which are stable over the long run, even dealing with imbalanced continual general chunking problems (CGCPs). The main idea is to apply equal updates from negative and positive feedback loops by symmetrical activation. We then introduce the concept of memory window to allow for more positive updates. Our algorithm surpasses or ties other unsupervised state-of-the-art baselines in all 12 imbalanced CGCPs with various difficulties, including dynamically changing ones. To verify its performance in real-world scenarios, we conduct experiments on several well-studied structure learning problems. The proposed method surpasses substantially other methods in 3 out of 4 scenarios, suggesting that symmetrical activation plays a critical role in uncovering topological structures and even hierarchies encoded in temporal data.
This article introduces a quick and simple combinatorial approximation algorithm for the Weighted correlation clustering problem. In this problem, we have a set of vertices and two difference and similarity weight values for each pair of vertices, and the goal is to cluster the vertices with minimum total intra-cluster difference weights plus inter-cluster similarity weights. Our algorithm's approximation factor is 3 when an instance of this problem satisfies probability constraints (the best-known was 5). If the instance satisfies triangle inequality in addition to probability constraints, the approximation factor is 1.6 (the best-known was 2).
Machine learning models need to be continually updated or corrected to ensure that the prediction accuracy remains consistently high. In this study, we consider scenarios where developers should be careful to change the prediction results by the model correction, such as when the model is part of a complex system or software. In such scenarios, the developers want to control the specification of the corrections. To achieve this, the developers need to understand which subpopulations of the inputs get inaccurate predictions by the model. Therefore, we propose correction rule mining to acquire a comprehensive list of rules that describe inaccurate subpopulations and how to correct them. We also develop an efficient correction rule mining algorithm that is a combination of frequent itemset mining and a unique pruning technique for correction rules. We observed that the proposed algorithm found various rules which help to collect data insufficiently learned, directly correct model outputs, and analyze concept drift.
The rise of deep learning algorithms has led to significant advancements in computer vision tasks, but their "black box" nature has raised concerns regarding interpretability. Explainable AI (XAI) has emerged as a critical area of research aiming to open this "black box", and shed light on the decision-making process of AI models. Visual explanations, as a subset of Explainable Artificial Intelligence (XAI), provide intuitive insights into the decision-making processes of AI models handling visual data by highlighting influential areas in an input image. Despite extensive research conducted on visual explanations, most evaluations are model-centered since the availability of corresponding real-world datasets with ground truth explanations is scarce in the context of image data. To bridge this gap, we introduce an XAI Benchmark comprising a dataset collection from diverse topics that provide both class labels and corresponding explanation annotations for images. We have processed data from diverse domains to align with our unified visual explanation framework. We introduce a comprehensive Visual Explanation pipeline, which integrates data loading, preprocessing, experimental setup, and model evaluation processes. This structure enables researchers to conduct fair comparisons of various visual explanation techniques. In addition, we provide a comprehensive review of over 10 evaluation methods for visual explanation to assist researchers in effectively utilizing our dataset collection. To further assess the performance of existing visual explanation methods, we conduct experiments on selected datasets using various model-centered and ground truth-centered evaluation metrics. We envision this benchmark could facilitate the advancement of visual explanation models. The XAI dataset collection and easy-to-use code for evaluation are publicly accessible at //xaidataset.github.io.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.