亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-quality conversational datasets are crucial for the successful development of Intelligent Tutoring Systems (ITS) that utilize a Large Language Model (LLM) backend. Synthetic student-teacher dialogues, generated using advanced GPT-4 models, are a common strategy for creating these datasets. However, subjects like physics that entail complex calculations pose a challenge. While GPT-4 presents impressive language processing capabilities, its limitations in fundamental mathematical reasoning curtail its efficacy for such subjects. To tackle this limitation, we introduce in this paper an innovative stateful prompt design. Our design orchestrates a mock conversation where both student and tutorbot roles are simulated by GPT-4. Each student response triggers an internal monologue, or `code soliloquy' in the GPT-tutorbot, which assesses whether its subsequent response would necessitate calculations. If a calculation is deemed necessary, it scripts the relevant Python code and uses the Python output to construct a response to the student. Our approach notably enhances the quality of synthetic conversation datasets, especially for subjects that are calculation-intensive. Our preliminary Subject Matter Expert evaluations reveal that our Higgs model, a fine-tuned LLaMA model, effectively uses Python for computations, which significantly enhances the accuracy and computational reliability of Higgs' responses. Code, models, and datasets is available at //github.com/luffycodes/Tutorbot-Spock-Phys.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 可約的 · Performer · 通道 · MoDELS ·
2023 年 12 月 20 日

Reg-ROMs are stabilization strategies that leverage spatial filtering to alleviate the spurious numerical oscillations generally displayed by the classical G-ROM in under-resolved numerical simulations of turbulent flows. In this paper, we propose a new Reg-ROM, the time-relaxation ROM (TR-ROM), which filters the marginally resolved scales. We compare the new TR-ROM with the two other Reg-ROMs in current use, i.e., the L-ROM and the EFR-ROM, in the numerical simulation of the turbulent channel flow at $Re_{\tau} = 180$ and $Re_{\tau} = 395$ in both the reproduction and the predictive regimes. For each Reg-ROM, we investigate two different filters: (i) the differential filter (DF), and (ii) a new higher-order algebraic filter (HOAF). In our numerical investigation, we monitor the Reg-ROM performance for the ROM dimension, $N$, and the filter order. We also perform sensitivity studies of the three Reg-ROMs for the time interval, relaxation parameter, and filter radius. The numerical results yield the following conclusions: (i) All three Reg-ROMs are significantly more accurate than the G-ROM and (ii) more accurate than the ROM projection, representing the best theoretical approximation of the training data in the given ROM space. (iii) With the optimal parameter values, the TR-ROM is more accurate than the other two Reg-ROMs in all tests. (iv) For most $N$ values, DF yields the most accurate results for all three Reg-ROMs. (v) The optimal parameters trained in the reproduction regime are also optimal for the predictive regime for most $N$ values. (vi) All three Reg-ROMs are sensitive to the filter radius and the filter order, and the EFR-ROM and the TR-ROM are sensitive to the relaxation parameter. (vii) The optimal range for the filter radius and the effect of relaxation parameter are similar for the two $\rm Re_\tau$ values.

Click-Through Rate (CTR) prediction is a crucial task in online recommendation platforms as it involves estimating the probability of user engagement with advertisements or items by clicking on them. Given the availability of various services like online shopping, ride-sharing, food delivery, and professional services on commercial platforms, recommendation systems in these platforms are required to make CTR predictions across multiple domains rather than just a single domain. However, multi-domain click-through rate (MDCTR) prediction remains a challenging task in online recommendation due to the complex mutual influence between domains. Traditional MDCTR models typically encode domains as discrete identifiers, ignoring rich semantic information underlying. Consequently, they can hardly generalize to new domains. Besides, existing models can be easily dominated by some specific domains, which results in significant performance drops in the other domains (\ie the ``seesaw phenomenon``). In this paper, we propose a novel solution Uni-CTR to address the above challenges. Uni-CTR leverages a backbone Large Language Model (LLM) to learn layer-wise semantic representations that capture commonalities between domains. Uni-CTR also uses several domain-specific networks to capture the characteristics of each domain. Note that we design a masked loss strategy so that these domain-specific networks are decoupled from backbone LLM. This allows domain-specific networks to remain unchanged when incorporating new or removing domains, thereby enhancing the flexibility and scalability of the system significantly. Experimental results on three public datasets show that Uni-CTR outperforms the state-of-the-art (SOTA) MDCTR models significantly. Furthermore, Uni-CTR demonstrates remarkable effectiveness in zero-shot prediction. We have applied Uni-CTR in industrial scenarios, confirming its efficiency.

Dirichlet Process Mixture Models (DPMMs) are widely used to address clustering problems. Their main advantage lies in their ability to automatically estimate the number of clusters during the inference process through the Bayesian non-parametric framework. However, the inference becomes considerably slow as the dataset size increases. This paper proposes a new distributed Markov Chain Monte Carlo (MCMC) inference method for DPMMs (DisCGS) using sufficient statistics. Our approach uses the collapsed Gibbs sampler and is specifically designed to work on distributed data across independent and heterogeneous machines, which habilitates its use in horizontal federated learning. Our method achieves highly promising results and notable scalability. For instance, with a dataset of 100K data points, the centralized algorithm requires approximately 12 hours to complete 100 iterations while our approach achieves the same number of iterations in just 3 minutes, reducing the execution time by a factor of 200 without compromising clustering performance. The code source is publicly available at //github.com/redakhoufache/DisCGS.

Measurement-based quantum computing (MBQC) is a promising quantum computing paradigm that performs computation through ``one-way'' measurements on entangled quantum qubits. It is widely used in photonic quantum computing (PQC), where the computation is carried out on photonic cluster states (i.e., a 2-D mesh of entangled photons). In MBQC-based PQC, the cluster state depth (i.e., the length of one-way measurements) to execute a quantum circuit plays an important role in the overall execution time and error. Thus, it is important to reduce the cluster state depth. In this paper, we propose FMCC, a compilation framework that employs dynamic programming to efficiently minimize the cluster state depth. Experimental results on five representative quantum algorithms show that FMCC achieves 53.6%, 60.6%, and 60.0% average depth reductions in small, medium, and large qubit counts compared to the state-of-the-art MBQC compilation frameworks.

Holographic MIMO (HMIMO) is being increasingly recognized as a key enabling technology for 6G wireless systems through the deployment of an extremely large number of antennas within a compact space to fully exploit the potentials of the electromagnetic (EM) channel. Nevertheless, the benefits of HMIMO systems cannot be fully unleashed without an efficient means to estimate the high-dimensional channel, whose distribution becomes increasingly complicated due to the accessibility of the near-field region. In this paper, we address the fundamental challenge of designing a low-complexity Bayes-optimal channel estimator in near-field HMIMO systems operating in unknown EM environments. The core idea is to estimate the HMIMO channels solely based on the Stein's score function of the received pilot signals and an estimated noise level, without relying on priors or supervision that is not feasible in practical deployment. A neural network is trained with the unsupervised denoising score matching objective to learn the parameterized score function. Meanwhile, a principal component analysis (PCA)-based algorithm is proposed to estimate the noise level leveraging the low-rank near-field spatial correlation. Building upon these techniques, we develop a Bayes-optimal score-based channel estimator for fully-digital HMIMO transceivers in a closed form. The optimal score-based estimator is also extended to hybrid analog-digital HMIMO systems by incorporating it into a low-complexity message passing algorithm. The (quasi-) Bayes-optimality of the proposed estimators is validated both in theory and by extensive simulation results. In addition to optimality, it is shown that our proposal is robust to various mismatches and can quickly adapt to dynamic EM environments in an online manner thanks to its unsupervised nature, demonstrating its potential in real-world deployment.

We devise a version of Linear Temporal Logic (LTL) on a denotational domain of streams. We investigate this logic in terms of domain theory, (point-free) topology and geometric logic. This yields the first steps toward an extension of the "Domain Theory in Logical Form" paradigm to temporal liveness properties. We show that the negation-free formulae of LTL induce sober subspaces of streams, but that this is in general not the case in presence of negation. We propose a direct, inductive, translation of negation-free LTL to geometric logic. This translation reflects the approximations used to compute the usual fixpoint representations of LTL modalities. As a motivating example, we handle a natural input-output specification for the usual filter function on streams.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司