亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce networked communication to the mean-field game framework, in particular to oracle-free settings where $N$ decentralised agents learn along a single, non-episodic evolution path of the empirical system. We prove that our architecture, with only a few reasonable assumptions about network structure, has sample guarantees bounded between those of the centralised- and independent-learning cases. We discuss how the sample guarantees of the three theoretical algorithms do not actually result in practical convergence. Accordingly, we show that in practical settings where the theoretical parameters are not observed (leading to poor estimation of the Q-function), our communication scheme significantly accelerates convergence over the independent case, without relying on the undesirable assumption of a centralised controller. We contribute several further practical enhancements to all three theoretical algorithms, allowing us to showcase their first empirical demonstrations. Our experiments confirm that we can remove several of the key theoretical assumptions of the algorithms, and display the empirical convergence benefits brought by our new networked communication. We additionally show that the networked approach has significant advantages, over both the centralised and independent alternatives, in terms of robustness to unexpected learning failures and to changes in population size.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會(hui)議。 Publisher:IFIP。 SIT:

Sequential testing, always-valid $p$-values, and confidence sequences promise flexible statistical inference and on-the-fly decision making. However, unlike fixed-$n$ inference based on asymptotic normality, existing sequential tests either make parametric assumptions and end up under-covering/over-rejecting when these fail or use non-parametric but conservative concentration inequalities and end up over-covering/under-rejecting. To circumvent these issues, we sidestep exact at-least-$\alpha$ coverage and focus on asymptotic calibration and asymptotic optimality. That is, we seek sequential tests whose probability of \emph{ever} rejecting a true hypothesis approaches $\alpha$ and whose expected time to reject a false hypothesis approaches a lower bound on all such asymptotically calibrated tests, both "approaches" occurring under an appropriate limit. We permit observations to be both non-parametric and dependent and focus on testing whether the observations form a martingale difference sequence. We propose the universal sequential probability ratio test (uSPRT), a slight modification to the normal-mixture sequential probability ratio test, where we add a burn-in period and adjust thresholds accordingly. We show that even in this very general setting, the uSPRT is asymptotically optimal under mild generic conditions. We apply the results to stabilized estimating equations to test means, treatment effects, {\etc} Our results also provide corresponding guarantees for the implied confidence sequences. Numerical simulations verify our guarantees and the benefits of the uSPRT over alternatives.

The state-of-the-art face recognition systems are typically trained on a single computer, utilizing extensive image datasets collected from various number of users. However, these datasets often contain sensitive personal information that users may hesitate to disclose. To address potential privacy concerns, we explore the application of federated learning, both with and without secure aggregators, in the context of both supervised and unsupervised face recognition systems. Federated learning facilitates the training of a shared model without necessitating the sharing of individual private data, achieving this by training models on decentralized edge devices housing the data. In our proposed system, each edge device independently trains its own model, which is subsequently transmitted either to a secure aggregator or directly to the central server. To introduce diverse data without the need for data transmission, we employ generative adversarial networks to generate imposter data at the edge. Following this, the secure aggregator or central server combines these individual models to construct a global model, which is then relayed back to the edge devices. Experimental findings based on the CelebA datasets reveal that employing federated learning in both supervised and unsupervised face recognition systems offers dual benefits. Firstly, it safeguards privacy since the original data remains on the edge devices. Secondly, the experimental results demonstrate that the aggregated model yields nearly identical performance compared to the individual models, particularly when the federated model does not utilize a secure aggregator. Hence, our results shed light on the practical challenges associated with privacy-preserving face image training, particularly in terms of the balance between privacy and accuracy.

We study energy-efficient offloading strategies in a large-scale MEC system with heterogeneous mobile users and network components. The system is considered with enabled user-task handovers that capture the mobility of various mobile users. We focus on a long-run objective and online algorithms that are applicable to realistic systems. The problem is significantly complicated by the large problem size, the heterogeneity of user tasks and network components, and the mobility of the users, for which conventional optimizers cannot reach optimum with a reasonable amount of computational and storage power. We formulate the problem in the vein of the restless multi-armed bandit process that enables the decomposition of high-dimensional state spaces and then achieves near-optimal algorithms applicable to realistically large problems in an online manner. Following the restless bandit technique, we propose two offloading policies by prioritizing the least marginal costs of selecting the corresponding computing and communication resources in the edge and cloud networks. This coincides with selecting the resources with the highest energy efficiency. Both policies are scalable to the offloading problem with a great potential to achieve proved asymptotic optimality - approach optimality as the problem size tends to infinity. With extensive numerical simulations, the proposed policies are demonstrated to clearly outperform baseline policies with respect to power conservation and robust to the tested heavy-tailed lifespan distributions of the offloaded tasks.

Video streaming continues to captivate attention of users and service providers, dominate in Internet traffic, and form a vibrant research field. Taking a pragmatic approach to reviewing recent research in the field, this paper considers the most dominant streaming paradigm, the main aspects of which include transmission of two-dimensional videos over the best-effort Internet, support from content delivery networks, and client-side bitrate adaptation. To make the survey more accessible, we incorporate extensive tutorial materials. In contrast with the siloed approaches of existing surveys, our paper holistically covers the end-to-end streaming pipeline from video capture and upload for server processing to distribution for playback on diverse user devices. Reflecting the practical interests of respective stakeholders, our survey presents a novel perspective on end-to-end streaming and sheds light on the relationships and interactions between its ingestion, processing, and distribution stages. At each stage, we classify streaming designs in regard to their methodology depending on whether intuition, theory, or machine learning serves as a methodological basis for their core contribution. In addition to tasks confined to a single stage, the survey also examines transversal topics such as coding, super resolution, and quality of experience. After surveying more than 200 papers, we synthesize current trends and project future directions in video streaming research.

Using virtual reality setups, users can fade out of their surroundings and dive fully into a thrilling and appealing virtual environment. The success of such immersive experiences depends heavily on natural and engaging interactions with the virtual world. As developers tend to focus on intuitive hand controls, other aspects of the broad range of full-body capabilities are easily left vacant. One repeatedly overlooked input modality is the user's gait. Even though users may walk physically to explore the environment, it usually does not matter how they move. However, gait-based interactions, using the variety of information contained in human gait, could offer interesting benefits for immersive experiences. For instance, stealth VR-games could profit from this additional range of interaction fidelity in the form of a sneaking-based input modality. In our work, we explore the potential of sneaking as a playful input modality for virtual environments. Therefore, we discuss possible sneaking-based gameplay mechanisms and develop three technical approaches, including precise foot-tracking and two abstraction levels. Our evaluation reveals the potential of sneaking-based interactions in IVEs, offering unique challenges and thrilling gameplay. For these interactions, precise tracking of individual footsteps is unnecessary, as a more abstract approach focusing on the players' intention offers the same experience while providing better comprehensible feedback. Based on these findings, we discuss the broader potential and individual strengths of our gait-centered interactions.

Nowadays, there are plenty of data sources generating massive amounts of information that, combined with novel data analytics frameworks, are meant to support optimisation in many application domains. Nonetheless, there are still shortcomings in terms of data discoverability, accessibility and interoperability. Open Data portals have emerged as a shift towards openness and discoverability. However, they do not impose any condition to the data itself, just stipulate how datasets have to be described. Alternatively, the NGSI-LD standard pursues harmonisation in terms of data modelling and accessibility. This paper presents a solution that bridges these two domains (i.e., Open Data portals and NGSI-LD-based data) in order to keep benefiting from the structured description of datasets offered by Open Data portals, while ensuring the interoperability provided by the NGSI-LD standard. Our solution aggregates the data into coherent datasets and generate high-quality descriptions, ensuring comprehensiveness, interoperability and accessibility. The proposed solution has been validated through a real-world implementation that exposes IoT data in NGSI-LD format through the European Data Portal (EDP). Moreover, the results from the Metadata Quality Assessment that the EDP implements, show that the datasets' descriptions generated achieve excellent ranking in terms of the Findability, Accessibility, Interoperability and Reusability (FAIR) data principles.

I examine a conceptual model of a recommendation system (RS) with user inflow and churn dynamics. When inflow and churn balance out, the user distribution reaches a steady state. Changing the recommendation algorithm alters the steady state and creates a transition period. During this period, the RS behaves differently from its new steady state. In particular, A/B experiment metrics obtained in transition periods are biased indicators of the RS's long term performance. Scholars and practitioners, however, often conduct A/B tests shortly after introducing new algorithms to validate their effectiveness. This A/B experiment paradigm, widely regarded as the gold standard for assessing RS improvements, may consequently yield false conclusions. I also briefly discuss the data bias caused by the user retention dynamics.

Input constraints are useful for many software development tasks. For example, input constraints of a function enable the generation of valid inputs, i.e., inputs that follow these constraints, to test the function deeper. API functions of deep learning (DL) libraries have DL specific input constraints, which are described informally in the free form API documentation. Existing constraint extraction techniques are ineffective for extracting DL specific input constraints. To fill this gap, we design and implement a new technique, DocTer, to analyze API documentation to extract DL specific input constraints for DL API functions. DocTer features a novel algorithm that automatically constructs rules to extract API parameter constraints from syntactic patterns in the form of dependency parse trees of API descriptions. These rules are then applied to a large volume of API documents in popular DL libraries to extract their input parameter constraints. To demonstrate the effectiveness of the extracted constraints, DocTer uses the constraints to enable the automatic generation of valid and invalid inputs to test DL API functions. Our evaluation on three popular DL libraries (TensorFlow, PyTorch, and MXNet) shows that the precision of DocTer in extracting input constraints is 85.4%. DocTer detects 94 bugs from 174 API functions, including one previously unknown security vulnerability that is now documented in the CVE database, while a baseline technique without input constraints detects only 59 bugs. Most (63) of the 94 bugs are previously unknown, 54 of which have been fixed or confirmed by developers after we report them. In addition, DocTer detects 43 inconsistencies in documents, 39 of which are fixed or confirmed.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司