亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In 1998, Brassard, Hoyer, Mosca, and Tapp (BHMT) gave a quantum algorithm for approximate counting. Given a list of $N$ items, $K$ of them marked, their algorithm estimates $K$ to within relative error $\varepsilon$ by making only $O\left( \frac{1}{\varepsilon}\sqrt{\frac{N}{K}}\right) $ queries. Although this speedup is of "Grover" type, the BHMT algorithm has the curious feature of relying on the Quantum Fourier Transform (QFT), more commonly associated with Shor's algorithm. Is this necessary? This paper presents a simplified algorithm, which we prove achieves the same query complexity using Grover iterations only. We also generalize this to a QFT-free algorithm for amplitude estimation. Related approaches to approximate counting were sketched previously by Grover, Abrams and Williams, Suzuki et al., and Wie (the latter two as we were writing this paper), but in all cases without rigorous analysis.

相關內容

The similarity between objects is significant in a broad range of areas. While similarity can be measured using off-the-shelf distance functions, they may fail to capture the inherent meaning of similarity, which tends to depend on the underlying data and task. Moreover, conventional distance functions limit the space of similarity measures to be symmetric and do not directly allow comparing objects from different spaces. We propose using quantum networks (GQSim) for learning task-dependent (a)symmetric similarity between data that need not have the same dimensionality. We analyze the properties of such similarity function analytically (for a simple case) and numerically (for a complex case) and showthat these similarity measures can extract salient features of the data. We also demonstrate that the similarity measure derived using this technique is $(\epsilon,\gamma,\tau)$-good, resulting in theoretically guaranteed performance. Finally, we conclude by applying this technique for three relevant applications - Classification, Graph Completion, Generative modeling.

It is an open question to determine if the theory of self-concordant barriers can provide an interior point method with strongly polynomial complexity in linear programming. In the special case of the logarithmic barrier, it was shown in [Allamigeon, Benchimol, Gaubert and Joswig, SIAM J. on Applied Algebra and Geometry, 2018] that the answer is negative. In this paper, we show that none of the self-concordant barrier interior point methods is strongly polynomial. This result is obtained by establishing that, on parametric families of convex optimization problems, the log-limit of the central path degenerates to a piecewise linear curve, independently of the choice of the barrier function. We provide an explicit linear program that falls in the same class as the Klee-Minty counterexample, i.e., in dimension $n$ with $2n$ constraints, in which the number of iterations is $\Omega(2^n)$.

We introduce a new method for Estimation of Signal Parameters based on Iterative Rational Approximation (ESPIRA) for sparse exponential sums. Our algorithm uses the AAA algorithm for rational approximation of the discrete Fourier transform of the given equidistant signal values. We show that ESPIRA can be interpreted as a matrix pencil method applied to Loewner matrices. These Loewner matrices are closely connected with the Hankel matrices which are usually employed for signal recovery. Due to the construction of the Loewner matrices via an adaptive selection of index sets, the matrix pencil method is stabilized. ESPIRA achieves similar recovery results for exact data as ESPRIT and the matrix pencil method but with less computational effort. Moreover, ESPIRA strongly outperforms ESPRIT and the matrix pencil method for noisy data and for signal approximation by short exponential sums.

We present a $(1- \varepsilon)$-approximation algorithms for maximum cardinality matchings in disk intersection graphs -- all with near linear running time. We also present estimation algorithm that returns $(1\pm \varepsilon)$-approximation to the size of such matchings -- this algorithms run in linear time for unit disks, and $O(n \log n)$ for general disks (as long as the density is relatively small).

The aim of this thesis is to develop a theoretical framework to study parameter estimation of quantum channels. We study the task of estimating unknown parameters encoded in a channel in the sequential setting. A sequential strategy is the most general way to use a channel multiple times. Our goal is to establish lower bounds (called Cramer-Rao bounds) on the estimation error. The bounds we develop are universally applicable; i.e., they apply to all permissible quantum dynamics. We consider the use of catalysts to enhance the power of a channel estimation strategy. This is termed amortization. The power of a channel for a parameter estimation is determined by its Fisher information. Thus, we study how much a catalyst quantum state can enhance the Fisher information of a channel by defining the amortized Fisher information. We establish our bounds by proving that for certain Fisher information quantities, catalyst states do not improve the performance of a sequential estimation protocol compared to a parallel one. The technical term for this is an amortization collapse. We use this to establish bounds when estimating one parameter, or multiple parameters simultaneously. Our bounds apply universally and we also cast them as optimization problems. For the single parameter case, we establish bounds for general quantum channels using both the symmetric logarithmic derivative (SLD) Fisher information and the right logarithmic derivative (RLD) Fisher information. The task of estimating multiple parameters simultaneously is more involved than the single parameter case, because the Cramer-Rao bounds take the form of matrix inequalities. We establish a scalar Cramer-Rao bound for multiparameter channel estimation using the RLD Fisher information. For both single and multiparameter estimation, we provide a no-go condition for the so-called Heisenberg scaling using our RLD-based bound.

Optimization under uncertainty and risk is indispensable in many practical situations. Our paper addresses stability of optimization problems using composite risk functionals which are subjected to measure perturbations. Our main focus is the asymptotic behavior of data-driven formulations with empirical or smoothing estimators such as kernels or wavelets applied to some or to all functions of the compositions. We analyze the properties of the new estimators and we establish strong law of large numbers, consistency, and bias reduction potential under fairly general assumptions. Our results are germane to risk-averse optimization and to data science in general.

The Sliced-Wasserstein distance (SW) is being increasingly used in machine learning applications as an alternative to the Wasserstein distance and offers significant computational and statistical benefits. Since it is defined as an expectation over random projections, SW is commonly approximated by Monte Carlo. We adopt a new perspective to approximate SW by making use of the concentration of measure phenomenon: under mild assumptions, one-dimensional projections of a high-dimensional random vector are approximately Gaussian. Based on this observation, we develop a simple deterministic approximation for SW. Our method does not require sampling a number of random projections, and is therefore both accurate and easy to use compared to the usual Monte Carlo approximation. We derive nonasymptotical guarantees for our approach, and show that the approximation error goes to zero as the dimension increases, under a weak dependence condition on the data distribution. We validate our theoretical findings on synthetic datasets, and illustrate the proposed approximation on a generative modeling problem.

Due to the falling costs of data acquisition and storage, researchers and industry analysts often want to find all instances of rare events in large datasets. For instance, scientists can cheaply capture thousands of hours of video, but are limited by the need to manually inspect long videos to identify relevant objects and events. To reduce this cost, recent work proposes to use cheap proxy models, such as image classifiers, to identify an approximate set of data points satisfying a data selection filter. Unfortunately, this recent work does not provide the statistical accuracy guarantees necessary in scientific and production settings. In this work, we introduce novel algorithms for approximate selection queries with statistical accuracy guarantees. Namely, given a limited number of exact identifications from an oracle, often a human or an expensive machine learning model, our algorithms meet a minimum precision or recall target with high probability. In contrast, existing approaches can catastrophically fail in satisfying these recall and precision targets. We show that our algorithms can improve query result quality by up to 30x for both the precision and recall targets in both real and synthetic datasets.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

北京阿比特科技有限公司