The recent success of text-to-image synthesis has taken the world by storm and captured the general public's imagination. From a technical standpoint, it also marked a drastic change in the favored architecture to design generative image models. GANs used to be the de facto choice, with techniques like StyleGAN. With DALL-E 2, auto-regressive and diffusion models became the new standard for large-scale generative models overnight. This rapid shift raises a fundamental question: can we scale up GANs to benefit from large datasets like LAION? We find that na\"Ively increasing the capacity of the StyleGAN architecture quickly becomes unstable. We introduce GigaGAN, a new GAN architecture that far exceeds this limit, demonstrating GANs as a viable option for text-to-image synthesis. GigaGAN offers three major advantages. First, it is orders of magnitude faster at inference time, taking only 0.13 seconds to synthesize a 512px image. Second, it can synthesize high-resolution images, for example, 16-megapixel pixels in 3.66 seconds. Finally, GigaGAN supports various latent space editing applications such as latent interpolation, style mixing, and vector arithmetic operations.
Stochastic gradient methods have been a popular and powerful choice of optimization methods, aimed at minimizing functions. Their advantage lies in the fact that that one approximates the gradient as opposed to using the full Jacobian matrix. One research direction, related to this, has been on the application to infinite-dimensional problems, where one may naturally have a Hilbert space framework. However, there has been limited work done on considering this in a more general setup, such as where the natural framework is that of a Banach space. This article aims to address this by the introduction of a novel stochastic method, the stochastic steepest descent method (SSD). The SSD will follow the spirit of stochastic gradient descent, which utilizes Riesz representation to identify gradients and derivatives. Our choice for using such a method is that it naturally allows one to adopt a Banach space setting, for which recent applications have exploited the benefit of this, such as in PDE-constrained shape optimization. We provide a convergence theory related to this under mild assumptions. Furthermore, we demonstrate the performance of this method on a couple of numerical applications, namely a $p$-Laplacian and an optimal control problem. Our assumptions are verified in these applications.
Text-to-image synthesis has achieved high-quality results with recent advances in diffusion models. However, text input alone has high spatial ambiguity and limited user controllability. Most existing methods allow spatial control through additional visual guidance (e.g, sketches and semantic masks) but require additional training with annotated images. In this paper, we propose a method for spatially controlling text-to-image generation without further training of diffusion models. Our method is based on the insight that the cross-attention maps reflect the positional relationship between words and pixels. Our aim is to control the attention maps according to given semantic masks and text prompts. To this end, we first explore a simple approach of directly swapping the cross-attention maps with constant maps computed from the semantic regions. Moreover, we propose masked-attention guidance, which can generate images more faithful to semantic masks than the first approach. Masked-attention guidance indirectly controls attention to each word and pixel according to the semantic regions by manipulating noise images fed to diffusion models. Experiments show that our method enables more accurate spatial control than baselines qualitatively and quantitatively.
Transformer has recently gained considerable popularity in low-level vision tasks, including image super-resolution (SR). These networks utilize self-attention along different dimensions, spatial or channel, and achieve impressive performance. This inspires us to combine the two dimensions in Transformer for a more powerful representation capability. Based on the above idea, we propose a novel Transformer model, Dual Aggregation Transformer (DAT), for image SR. Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner. Specifically, we alternately apply spatial and channel self-attention in consecutive Transformer blocks. The alternate strategy enables DAT to capture the global context and realize inter-block feature aggregation. Furthermore, we propose the adaptive interaction module (AIM) and the spatial-gate feed-forward network (SGFN) to achieve intra-block feature aggregation. AIM complements two self-attention mechanisms from corresponding dimensions. Meanwhile, SGFN introduces additional non-linear spatial information in the feed-forward network. Extensive experiments show that our DAT surpasses current methods. Code and models are obtainable at //github.com/zhengchen1999/DAT.
Social media platforms, despite their value in promoting open discourse, are often exploited to spread harmful content. Current deep learning and natural language processing models used for detecting this harmful content overly rely on domain-specific terms affecting their capabilities to adapt to generalizable hate speech detection. This is because they tend to focus too narrowly on particular linguistic signals or the use of certain categories of words. Another significant challenge arises when platforms lack high-quality annotated data for training, leading to a need for cross-platform models that can adapt to different distribution shifts. Our research introduces a cross-platform hate speech detection model capable of being trained on one platform's data and generalizing to multiple unseen platforms. To achieve good generalizability across platforms, one way is to disentangle the input representations into invariant and platform-dependent features. We also argue that learning causal relationships, which remain constant across diverse environments, can significantly aid in understanding invariant representations in hate speech. By disentangling input into platform-dependent features (useful for predicting hate targets) and platform-independent features (used to predict the presence of hate), we learn invariant representations resistant to distribution shifts. These features are then used to predict hate speech across unseen platforms. Our extensive experiments across four platforms highlight our model's enhanced efficacy compared to existing state-of-the-art methods in detecting generalized hate speech.
Recently, methods for skeleton-based human activity recognition have been shown to be vulnerable to adversarial attacks. However, these attack methods require either the full knowledge of the victim (i.e. white-box attacks), access to training data (i.e. transfer-based attacks) or frequent model queries (i.e. black-box attacks). All their requirements are highly restrictive, raising the question of how detrimental the vulnerability is. In this paper, we show that the vulnerability indeed exists. To this end, we consider a new attack task: the attacker has no access to the victim model or the training data or labels, where we coin the term hard no-box attack. Specifically, we first learn a motion manifold where we define an adversarial loss to compute a new gradient for the attack, named skeleton-motion-informed (SMI) gradient. Our gradient contains information of the motion dynamics, which is different from existing gradient-based attack methods that compute the loss gradient assuming each dimension in the data is independent. The SMI gradient can augment many gradient-based attack methods, leading to a new family of no-box attack methods. Extensive evaluation and comparison show that our method imposes a real threat to existing classifiers. They also show that the SMI gradient improves the transferability and imperceptibility of adversarial samples in both no-box and transfer-based black-box settings.
Video moment localization aims to retrieve the target segment of an untrimmed video according to the natural language query. Weakly supervised methods gains attention recently, as the precise temporal location of the target segment is not always available. However, one of the greatest challenges encountered by the weakly supervised method is implied in the mismatch between the video and language induced by the coarse temporal annotations. To refine the vision-language alignment, recent works contrast the cross-modality similarities driven by reconstructing masked queries between positive and negative video proposals. However, the reconstruction may be influenced by the latent spurious correlation between the unmasked and the masked parts, which distorts the restoring process and further degrades the efficacy of contrastive learning since the masked words are not completely reconstructed from the cross-modality knowledge. In this paper, we discover and mitigate this spurious correlation through a novel proposed counterfactual cross-modality reasoning method. Specifically, we first formulate query reconstruction as an aggregated causal effect of cross-modality and query knowledge. Then by introducing counterfactual cross-modality knowledge into this aggregation, the spurious impact of the unmasked part contributing to the reconstruction is explicitly modeled. Finally, by suppressing the unimodal effect of masked query, we can rectify the reconstructions of video proposals to perform reasonable contrastive learning. Extensive experimental evaluations demonstrate the effectiveness of our proposed method. The code is available at \href{//github.com/sLdZ0306/CCR}{//github.com/sLdZ0306/CCR}.
Bayesian models of group learning are studied in Economics since the 1970s. and more recently in computational linguistics. The models from Economics postulate that agents maximize utility in their communication and actions. The Economics models do not explain the ``probability matching" phenomena that are observed in many experimental studies. To address these observations, Bayesian models that do not formally fit into the economic utility maximization framework were introduced. In these models individuals sample from their posteriors in communication. In this work we study the asymptotic behavior of such models on connected networks with repeated communication. Perhaps surprisingly, despite the fact that individual agents are not utility maximizers in the classical sense, we establish that the individuals ultimately agree and furthermore show that the limiting posterior is Bayes optimal. We explore the interpretation of our results in terms of Large Language Models (LLMs). In the positive direction our results can be interpreted as stating that interaction between different LLMs can lead to optimal learning. However, we provide an example showing how misspecification may lead LLM agents to be overconfident in their estimates.
Diffusion models recently have been successfully applied for the visual synthesis of strikingly realistic appearing images. This raises strong concerns about their potential for malicious purposes. In this paper, we propose using the lightweight multi Local Intrinsic Dimensionality (multiLID), which has been originally developed in context of the detection of adversarial examples, for the automatic detection of synthetic images and the identification of the according generator networks. In contrast to many existing detection approaches, which often only work for GAN-generated images, the proposed method provides close to perfect detection results in many realistic use cases. Extensive experiments on known and newly created datasets demonstrate that the proposed multiLID approach exhibits superiority in diffusion detection and model identification. Since the empirical evaluations of recent publications on the detection of generated images are often mainly focused on the "LSUN-Bedroom" dataset, we further establish a comprehensive benchmark for the detection of diffusion-generated images, including samples from several diffusion models with different image sizes.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.