亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data-driven analyses of biases in historical texts can help illuminate the origin and development of biases prevailing in modern society. However, digitised historical documents pose a challenge for NLP practitioners as these corpora suffer from errors introduced by optical character recognition (OCR) and are written in an archaic language. In this paper, we investigate the continuities and transformations of bias in historical newspapers published in the Caribbean during the colonial era (18th to 19th centuries). Our analyses are performed along the axes of gender, race, and their intersection. We examine these biases by conducting a temporal study in which we measure the development of lexical associations using distributional semantics models and word embeddings. Further, we evaluate the effectiveness of techniques designed to process OCR-generated data and assess their stability when trained on and applied to the noisy historical newspapers. We find that there is a trade-off between the stability of the word embeddings and their compatibility with the historical dataset. We provide evidence that gender and racial biases are interdependent, and their intersection triggers distinct effects. These findings align with the theory of intersectionality, which stresses that biases affecting people with multiple marginalised identities compound to more than the sum of their constituents.

相關內容

Language models are trained on large-scale corpora that embed implicit biases documented in psychology. Valence associations (pleasantness/unpleasantness) of social groups determine the biased attitudes towards groups and concepts in social cognition. Building on this established literature, we quantify how social groups are valenced in English language models using a sentence template that provides an intersectional context. We study biases related to age, education, gender, height, intelligence, literacy, race, religion, sex, sexual orientation, social class, and weight. We present a concept projection approach to capture the valence subspace through contextualized word embeddings of language models. Adapting the projection-based approach to embedding association tests that quantify bias, we find that language models exhibit the most biased attitudes against gender identity, social class, and sexual orientation signals in language. We find that the largest and better-performing model that we study is also more biased as it effectively captures bias embedded in sociocultural data. We validate the bias evaluation method by overperforming on an intrinsic valence evaluation task. The approach enables us to measure complex intersectional biases as they are known to manifest in the outputs and applications of language models that perpetuate historical biases. Moreover, our approach contributes to design justice as it studies the associations of groups underrepresented in language such as transgender and homosexual individuals.

As large language models (LLMs) continue to advance, accurately and comprehensively evaluating their performance becomes increasingly challenging. Conventionally, human evaluations are considered the gold standard in natural language generation. Recent advancements incorporate state-of-the-art LLMs as proxies for human judges in evaluation processes. Nonetheless, the extent to which humans and LLMs are capable evaluators remains uncertain. This study aims to investigate the behavior of both crowd-sourced human and LLM-based judges when comparing outputs from different models. To accomplish this, we curate a dataset comprising intentionally flawed machine-generated answers. Our findings indicate that despite the potentially greater danger posed by factual errors, answers with factual errors were still rated more favorably compared to answers that were too short or contained grammatical errors. This highlights a concerning bias in the evaluation process. To address this issue, we propose to independently evaluate machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score. We instantiate this idea with the Elo rating system, resulting in the Multi-Elo Rating System. Empirical results from our study reveal that this proposed approach significantly enhances the quality of LLM-based evaluations, particularly in terms of factual accuracy. However, notable improvement is not observed in crowd-sourced-based evaluations, suggesting the need for further investigation and refinement.

Polytomous categorical data are frequent in studies, that can be obtained with an individual or grouped structure. In both structures, the generalized logit model is commonly used to relate the covariates on the response variable. After fitting a model, one of the challenges is the definition of an appropriate residual and choosing diagnostic techniques. Since the polytomous variable is multivariate, raw, Pearson, or deviance residuals are vectors and their asymptotic distribution is generally unknown, which leads to difficulties in graphical visualization and interpretation. Therefore, the definition of appropriate residuals and the choice of the correct analysis in diagnostic tools is important, especially for nominal data, where a restriction of methods is observed. This paper proposes the use of randomized quantile residuals associated with individual and grouped nominal data, as well as Euclidean and Mahalanobis distance measures, as an alternative to reduce the dimension of the residuals. We developed simulation studies with both data structures associated. The half-normal plots with simulation envelopes were used to assess model performance. These studies demonstrated a good performance of the quantile residuals, and the distance measurements allowed a better interpretation of the graphical techniques. We illustrate the proposed procedures with two applications to real data.

Knowing the features of a complex system that are highly relevant to a particular target variable is of fundamental interest in many areas of science. Existing approaches are often limited to linear settings, sometimes lack guarantees, and in most cases, do not scale to the problem at hand, in particular to images. We propose DRCFS, a doubly robust feature selection method for identifying the causal features even in nonlinear and high dimensional settings. We provide theoretical guarantees, illustrate necessary conditions for our assumptions, and perform extensive experiments across a wide range of simulated and semi-synthetic datasets. DRCFS significantly outperforms existing state-of-the-art methods, selecting robust features even in challenging highly non-linear and high-dimensional problems.

Probability density estimation is a core problem of statistics and signal processing. Moment methods are an important means of density estimation, but they are generally strongly dependent on the choice of feasible functions, which severely affects the performance. In this paper, we propose a non-classical parametrization for density estimation using sample moments, which does not require the choice of such functions. The parametrization is induced by the squared Hellinger distance, and the solution of it, which is proved to exist and be unique subject to a simple prior that does not depend on data, and can be obtained by convex optimization. Statistical properties of the density estimator, together with an asymptotic error upper bound are proposed for the estimator by power moments. Applications of the proposed density estimator in signal processing tasks are given. Simulation results validate the performance of the estimator by a comparison to several prevailing methods. To the best of our knowledge, the proposed estimator is the first one in the literature for which the power moments up to an arbitrary even order exactly match the sample moments, while the true density is not assumed to fall within specific function classes.

Synthetic time series are often used in practical applications to augment the historical time series dataset for better performance of machine learning algorithms, amplify the occurrence of rare events, and also create counterfactual scenarios described by the time series. Distributional-similarity (which we refer to as realism) as well as the satisfaction of certain numerical constraints are common requirements in counterfactual time series scenario generation requests. For instance, the US Federal Reserve publishes synthetic market stress scenarios given by the constrained time series for financial institutions to assess their performance in hypothetical recessions. Existing approaches for generating constrained time series usually penalize training loss to enforce constraints, and reject non-conforming samples. However, these approaches would require re-training if we change constraints, and rejection sampling can be computationally expensive, or impractical for complex constraints. In this paper, we propose a novel set of methods to tackle the constrained time series generation problem and provide efficient sampling while ensuring the realism of generated time series. In particular, we frame the problem using a constrained optimization framework and then we propose a set of generative methods including ``GuidedDiffTime'', a guided diffusion model to generate realistic time series. Empirically, we evaluate our work on several datasets for financial and energy data, where incorporating constraints is critical. We show that our approaches outperform existing work both qualitatively and quantitatively. Most importantly, we show that our ``GuidedDiffTime'' model is the only solution where re-training is not necessary for new constraints, resulting in a significant carbon footprint reduction.

In recent years, the number of cyber attacks has grown rapidly. An effective way to reduce the attack surface and protect software is adoption of methodologies that apply security at each step of the software development lifecycle. While different methodologies have been proposed to address software security, recent research shows an increase in the number of vulnerabilities in software and data breaches. Therefore, the security practices incorporated in secure software development methodologies require investigation. This paper provides an overview of security practices involved in 28 secure software development methodologies from industry, government, and academia. To achieve this goal, we distributed the security practices among the software development lifecycle stages. We also investigated auxiliary (non-technical) practices, such as organizational, behavioral, legal, policy, and governance aspects that are incorporated in the secure software development methodologies. Furthermore, we explored methods used to provide evidence of the effectiveness of the methodologies. Finally, we present the gaps that require attention in the scientific community. The results of our survey may assist researchers and organizations to better understand the existing security practices integrated into the secure software development methodologies. In addition, our bridge between "technical" and "non-technical" worlds may be useful for non-technical specialists who investigate software security. Moreover, exploring the gaps that we found in current research may help improve security in software development and produce software with fewer number of vulnerabilities.

While understanding and removing gender biases in language models has been a long-standing problem in Natural Language Processing, prior research work has primarily been limited to English. In this work, we investigate some of the challenges with evaluating and mitigating biases in multilingual settings which stem from a lack of existing benchmarks and resources for bias evaluation beyond English especially for non-western context. In this paper, we first create a benchmark for evaluating gender biases in pre-trained masked language models by extending DisCo to different Indian languages using human annotations. We extend various debiasing methods to work beyond English and evaluate their effectiveness for SOTA massively multilingual models on our proposed metric. Overall, our work highlights the challenges that arise while studying social biases in multilingual settings and provides resources as well as mitigation techniques to take a step toward scaling to more languages.

Neural architecture-based recommender systems have achieved tremendous success in recent years. However, when dealing with highly sparse data, they still fall short of expectation. Self-supervised learning (SSL), as an emerging technique to learn with unlabeled data, recently has drawn considerable attention in many fields. There is also a growing body of research proceeding towards applying SSL to recommendation for mitigating the data sparsity issue. In this survey, a timely and systematical review of the research efforts on self-supervised recommendation (SSR) is presented. Specifically, we propose an exclusive definition of SSR, on top of which we build a comprehensive taxonomy to divide existing SSR methods into four categories: contrastive, generative, predictive, and hybrid. For each category, the narrative unfolds along its concept and formulation, the involved methods, and its pros and cons. Meanwhile, to facilitate the development and evaluation of SSR models, we release an open-source library SELFRec, which incorporates multiple benchmark datasets and evaluation metrics, and has implemented a number of state-of-the-art SSR models for empirical comparison. Finally, we shed light on the limitations in the current research and outline the future research directions.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

北京阿比特科技有限公司