亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bayesian methods for learning Gaussian graphical models offer a robust framework that addresses model uncertainty and incorporates prior knowledge. Despite their theoretical strengths, the applicability of Bayesian methods is often constrained by computational needs, especially in modern contexts involving thousands of variables. To overcome this issue, we introduce two novel Markov chain Monte Carlo (MCMC) search algorithms that have a significantly lower computational cost than leading Bayesian approaches. Our proposed MCMC-based search algorithms use the marginal pseudo-likelihood approach to bypass the complexities of computing intractable normalizing constants and iterative precision matrix sampling. These algorithms can deliver reliable results in mere minutes on standard computers, even for large-scale problems with one thousand variables. Furthermore, our proposed method is capable of addressing model uncertainty by efficiently exploring the full posterior graph space. Our simulation study indicates that the proposed algorithms, particularly for large-scale sparse graphs, outperform the leading Bayesian approaches in terms of computational efficiency and precision. The implementation supporting the new approach is available through the R package BDgraph.

相關內容

《圖形(xing)模(mo)(mo)型(xing)》是國(guo)際公認的(de)(de)高評價(jia)的(de)(de)頂級期(qi)刊,專注于圖形(xing)模(mo)(mo)型(xing)的(de)(de)創建、幾何處理(li)、動(dong)畫和(he)可視化(hua),以(yi)及它(ta)們在工(gong)程(cheng)、科學、文化(hua)和(he)娛樂方面(mian)的(de)(de)應(ying)用(yong)。GMOD為其讀者提(ti)供(gong)了經過徹底審(shen)查和(he)精(jing)心(xin)挑(tiao)選的(de)(de)論文,這些論文傳播令(ling)人興奮的(de)(de)創新,傳授嚴謹的(de)(de)理(li)論基礎,提(ti)出(chu)健壯和(he)有(you)效的(de)(de)解決(jue)方案,或(huo)描述(shu)各種(zhong)主題中的(de)(de)雄(xiong)心(xin)勃(bo)勃(bo)的(de)(de)系統或(huo)應(ying)用(yong)程(cheng)序。 官網地(di)址(zhi):

Support Vector Machine (SVM) stands out as a prominent machine learning technique widely applied in practical pattern recognition tasks. It achieves binary classification by maximizing the "margin", which represents the minimum distance between instances and the decision boundary. Although many efforts have been dedicated to expanding SVM for multi-class case through strategies such as one versus one and one versus the rest, satisfactory solutions remain to be developed. In this paper, we propose a novel method for multi-class SVM that incorporates pairwise class loss considerations and maximizes the minimum margin. Adhering to this concept, we embrace a new formulation that imparts heightened flexibility to multi-class SVM. Furthermore, the correlations between the proposed method and multiple forms of multi-class SVM are analyzed. The proposed regularizer, akin to the concept of "margin", can serve as a seamless enhancement over the softmax in deep learning, providing guidance for network parameter learning. Empirical evaluations demonstrate the effectiveness and superiority of our proposed method over existing multi-classification methods.Code is available at //github.com/zz-haooo/M3SVM.

We introduce Multi-view Ancestral Sampling (MAS), a method for 3D motion generation, using 2D diffusion models that were trained on motions obtained from in-the-wild videos. As such, MAS opens opportunities to exciting and diverse fields of motion previously under-explored as 3D data is scarce and hard to collect. MAS works by simultaneously denoising multiple 2D motion sequences representing different views of the same 3D motion. It ensures consistency across all views at each diffusion step by combining the individual generations into a unified 3D sequence, and projecting it back to the original views. We demonstrate MAS on 2D pose data acquired from videos depicting professional basketball maneuvers, rhythmic gymnastic performances featuring a ball apparatus, and horse races. In each of these domains, 3D motion capture is arduous, and yet, MAS generates diverse and realistic 3D sequences. Unlike the Score Distillation approach, which optimizes each sample by repeatedly applying small fixes, our method uses a sampling process that was constructed for the diffusion framework. As we demonstrate, MAS avoids common issues such as out-of-domain sampling and mode-collapse. //guytevet.github.io/mas-page/

This paper proposes a fully scalable multi-agent reinforcement learning (MARL) approach for packet scheduling in conflict graphs, aiming to minimizing average packet delays. Each agent autonomously manages the schedule of a single link over one or multiple sub-bands, considering its own state and states of conflicting links. The problem can be conceptualized as a decentralized partially observable Markov decision process (Dec-POMDP). The proposed solution leverages an on-policy reinforcement learning algorithms multi-agent proximal policy optimization (MAPPO) within a multi-agent networked system, incorporating advanced recurrent structures in the neural network. The MARL design allows for fully decentralized training and execution, seamlessly scaling to very large networks. Extensive simulations across a diverse range of conflict graphs demonstrate that the proposed solution compares favorably to well-established schedulers in terms of both throughput and delay under various traffic conditions.

In-context learning (ICL) emerges as a promising capability of large language models (LLMs) by providing them with demonstration examples to perform diverse tasks. However, the underlying mechanism of how LLMs learn from the provided context remains under-explored. In this paper, we investigate the working mechanism of ICL through an information flow lens. Our findings reveal that label words in the demonstration examples function as anchors: (1) semantic information aggregates into label word representations during the shallow computation layers' processing; (2) the consolidated information in label words serves as a reference for LLMs' final predictions. Based on these insights, we introduce an anchor re-weighting method to improve ICL performance, a demonstration compression technique to expedite inference, and an analysis framework for diagnosing ICL errors in GPT2-XL. The promising applications of our findings again validate the uncovered ICL working mechanism and pave the way for future studies.

We introduce Dream2Real, a robotics framework which integrates vision-language models (VLMs) trained on 2D data into a 3D object rearrangement pipeline. This is achieved by the robot autonomously constructing a 3D representation of the scene, where objects can be rearranged virtually and an image of the resulting arrangement rendered. These renders are evaluated by a VLM, so that the arrangement which best satisfies the user instruction is selected and recreated in the real world with pick-and-place. This enables language-conditioned rearrangement to be performed zero-shot, without needing to collect a training dataset of example arrangements. Results on a series of real-world tasks show that this framework is robust to distractors, controllable by language, capable of understanding complex multi-object relations, and readily applicable to both tabletop and 6-DoF rearrangement tasks.

Rationalization empowers deep learning models with self-explaining capabilities through a cooperative game, where a generator selects a semantically consistent subset of the input as a rationale, and a subsequent predictor makes predictions based on the selected rationale. In this paper, we discover that rationalization is prone to a problem named \emph{rationale shift}, which arises from the algorithmic bias of the cooperative game. Rationale shift refers to a situation where the semantics of the selected rationale may deviate from the original input, but the predictor still produces accurate predictions based on the deviation, resulting in a compromised generator with misleading feedback. To address this issue, we first demonstrate the importance of the alignment between the rationale and the full input through both empirical observations and theoretical analysis. Subsequently, we introduce a novel approach called DAR (\textbf{D}iscriminatively \textbf{A}ligned \textbf{R}ationalization), which utilizes an auxiliary module pretrained on the full input to discriminatively align the selected rationale and the original input. We theoretically illustrate how DAR accomplishes the desired alignment, thereby overcoming the rationale shift problem. The experiments on two widely used real-world benchmarks show that the proposed method significantly improves the explanation quality (measured by the overlap between the model-selected explanation and the human-annotated rationale) as compared to state-of-the-art techniques. Additionally, results on two synthetic settings further validate the effectiveness of DAR in addressing the rationale shift problem.

Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MiniImageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.

Pre-trained models learn contextualized word representations on large-scale text corpus through a self-supervised learning method, which has achieved promising performance after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. Pre-trained models with knowledge injection, which we call knowledge enhanced pre-trained models (KEPTMs), possess deep understanding and logical reasoning and introduce interpretability to some extent. In this survey, we provide a comprehensive overview of KEPTMs for natural language processing. We first introduce the progress of pre-trained models and knowledge representation learning. Then we systematically categorize existing KEPTMs from three different perspectives. Finally, we outline some potential directions of KEPTMs for future research.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司