亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite remarkable advancements, mainstream gaze estimation techniques, particularly appearance-based methods, often suffer from performance degradation in uncontrolled environments due to variations in illumination and individual facial attributes. Existing domain adaptation strategies, limited by their need for target domain samples, may fall short in real-world applications. This letter introduces Branch-out Auxiliary Regularization (BAR), an innovative method designed to boost gaze estimation's generalization capabilities without requiring direct access to target domain data. Specifically, BAR integrates two auxiliary consistency regularization branches: one that uses augmented samples to counteract environmental variations, and another that aligns gaze directions with positive source domain samples to encourage the learning of consistent gaze features. These auxiliary pathways strengthen the core network and are integrated in a smooth, plug-and-play manner, facilitating easy adaptation to various other models. Comprehensive experimental evaluations on four cross-dataset tasks demonstrate the superiority of our approach.

相關內容

Speech foundation models, trained on vast datasets, have opened unique opportunities in addressing challenging low-resource speech understanding, such as child speech. In this work, we explore the capabilities of speech foundation models on child-adult speaker diarization. We show that exemplary foundation models can achieve 39.5% and 62.3% relative reductions in Diarization Error Rate and Speaker Confusion Rate, respectively, compared to previous speaker diarization methods. In addition, we benchmark and evaluate the speaker diarization results of the speech foundation models with varying the input audio window size, speaker demographics, and training data ratio. Our results highlight promising pathways for understanding and adopting speech foundation models to facilitate child speech understanding.

Among all data augmentation techniques proposed so far, linear interpolation of training samples, also called Mixup, has found to be effective for a large panel of applications. Along with improved performance, Mixup is also a good technique for improving calibration and predictive uncertainty. However, mixing data carelessly can lead to manifold intrusion, i.e., conflicts between the synthetic labels assigned and the true label distributions, which can deteriorate calibration. In this work, we argue that the likelihood of manifold intrusion increases with the distance between data to mix. To this end, we propose to dynamically change the underlying distributions of interpolation coefficients depending on the similarity between samples to mix, and define a flexible framework to do so without losing in diversity. We provide extensive experiments for classification and regression tasks, showing that our proposed method improves performance and calibration of models, while being much more efficient. The code for our work is available at //github.com/qbouniot/sim_kernel_mixup.

Despite recent improvements in End-to-End Automatic Speech Recognition (E2E ASR) systems, the performance can degrade due to vocal characteristic mismatches between training and testing data, particularly with limited target speaker adaptation data. We propose a novel speaker adaptation approach Speaker-Smoothed kNN that leverages k-Nearest Neighbors (kNN) retrieval techniques to improve model output by finding correctly pronounced tokens from its pre-built datastore during the decoding phase. Moreover, we utilize x-vector to dynamically adjust kNN interpolation parameters for data sparsity issue. This approach was validated using KeSpeech and MagicData corpora under in-domain and all-domain settings. Our method consistently performs comparably to fine-tuning without the associated performance degradation during speaker changes. Furthermore, in the all-domain setting, our method achieves state-of-the-art results, reducing the CER in both single speaker and multi-speaker test scenarios.

In [Math. Oper. Res., 2011], Fleischer et al. introduced a powerful technique for solving the generic class of separable assignment problems (SAP), in which a set of items of given values and weights needs to be packed into a set of bins subject to separable assignment constraints, so as to maximize the total value. The approach of Fleischer at al. relies on solving a configuration LP and sampling a configuration for each bin independently based on the LP solution. While there is a SAP variant for which this approach yields the best possible approximation ratio, for various special cases, there are discrepancies between the approximation ratios obtained using the above approach and the state-of-the-art approximations. This raises the following natural question: Can we do better by iteratively solving the configuration LP and sampling a few bins at a time? To assess the potential gain from iterative randomized rounding, we consider as a case study one interesting SAP variant, namely, Uniform Cardinality Constrained Multiple Knapsack, for which we answer this question affirmatively. The input is a set of items, each has a value and a weight, and a set of uniform capacity bins. The goal is to assign a subset of the items of maximum total value to the bins such that $(i)$ the capacity of any bin is not exceeded, and $(ii)$ the number of items assigned to each bin satisfies a given cardinality constraint. While the technique of Fleischer et al. yields a $\left(1-\frac{1}{e}\right)$-approximation for the problem, we show that iterative randomized rounding leads to an efficient polynomial time approximation scheme (EPTAS), thus essentially resolving the complexity status of the problem. Our analysis of iterative randomized rounding can be useful for solving other SAP variants.

Vision Transformers (ViT), when paired with large-scale pretraining, have shown remarkable performance across various computer vision tasks, primarily due to their weak inductive bias. However, while such weak inductive bias aids in pretraining scalability, this may hinder the effective adaptation of ViTs for visuo-motor control tasks as a result of the absence of control-centric inductive biases. Such absent inductive biases include spatial locality and translation equivariance bias which convolutions naturally offer. To this end, we introduce Convolution Injector (CoIn), an add-on module that injects convolutions which are rich in locality and equivariance biases into a pretrained ViT for effective adaptation in visuo-motor control. We evaluate CoIn with three distinct types of pretrained ViTs (CLIP, MVP, VC-1) across 12 varied control tasks within three separate domains (Adroit, MetaWorld, DMC), and demonstrate that CoIn consistently enhances control task performance across all experimented environments and models, validating the effectiveness of providing pretrained ViTs with control-centric biases.

Despite advancements of end-to-end (E2E) models in speech recognition, named entity recognition (NER) is still challenging but critical for semantic understanding. Previous studies mainly focus on various rule-based or attention-based contextual biasing algorithms. However, their performance might be sensitive to the biasing weight or degraded by excessive attention to the named entity list, along with a risk of false triggering. Inspired by the success of the class-based language model (LM) in NER in conventional hybrid systems and the effective decoupling of acoustic and linguistic information in the factorized neural Transducer (FNT), we propose C-FNT, a novel E2E model that incorporates class-based LMs into FNT. In C-FNT, the LM score of named entities can be associated with the name class instead of its surface form. The experimental results show that our proposed C-FNT significantly reduces error in named entities without hurting performance in general word recognition.

Analog layout synthesis faces significant challenges due to its dependence on manual processes, considerable time requirements, and performance instability. Current Bayesian Optimization (BO)-based techniques for analog layout synthesis, despite their potential for automation, suffer from slow convergence and extensive data needs, limiting their practical application. This paper presents the \texttt{LLANA} framework, a novel approach that leverages Large Language Models (LLMs) to enhance BO by exploiting the few-shot learning abilities of LLMs for more efficient generation of analog design-dependent parameter constraints. Experimental results demonstrate that \texttt{LLANA} not only achieves performance comparable to state-of-the-art (SOTA) BO methods but also enables a more effective exploration of the analog circuit design space, thanks to LLM's superior contextual understanding and learning efficiency. The code is available at \url{//github.com/dekura/LLANA}.

Recent advancements in sequence modeling have led to the development of the Mamba architecture, noted for its selective state space approach, offering a promising avenue for efficient long sequence handling. However, its application in 3D shape generation, particularly at high resolutions, remains underexplored. Traditional diffusion transformers (DiT) with self-attention mechanisms, despite their potential, face scalability challenges due to the cubic complexity of attention operations as input length increases. This complexity becomes a significant hurdle when dealing with high-resolution voxel sizes. To address this challenge, we introduce a novel diffusion architecture tailored for 3D point clouds generation-Diffusion Mamba (DiM-3D). This architecture forgoes traditional attention mechanisms, instead utilizing the inherent efficiency of the Mamba architecture to maintain linear complexity with respect to sequence length. DiM-3D is characterized by fast inference times and substantially lower computational demands, quantified in reduced Gflops, thereby addressing the key scalability issues of prior models. Our empirical results on the ShapeNet benchmark demonstrate that DiM-3D achieves state-of-the-art performance in generating high-fidelity and diverse 3D shapes. Additionally, DiM-3D shows superior capabilities in tasks like 3D point cloud completion. This not only proves the model's scalability but also underscores its efficiency in generating detailed, high-resolution voxels necessary for advanced 3D shape modeling, particularly excelling in environments requiring high-resolution voxel sizes. Through these findings, we illustrate the exceptional scalability and efficiency of the Diffusion Mamba framework in 3D shape generation, setting a new standard for the field and paving the way for future explorations in high-resolution 3D modeling technologies.

Soft grippers, with their inherent compliance and adaptability, show advantages for delicate and versatile manipulation tasks in robotics. This paper presents a novel approach to underactuated control of multiple soft actuators, specifically focusing on the synchronization of soft fingers within a soft gripper. Utilizing a single syringe pump as the actuation mechanism, we address the challenge of coordinating multiple degrees of freedom of a compliant system. The theoretical framework applies concepts from stable inversion theory, adapting them to the unique dynamics of the underactuated soft gripper. Through meticulous mechatronic system design and controller synthesis, we demonstrate both in simulation and experimentation the efficacy and applicability of our approach in achieving precise and synchronized manipulation tasks. Our findings not only contribute to the advancement of soft robot control but also offer practical insights into the design and control of underactuated systems for real-world applications.

We introduce "pointer-guided segment ordering" (SO), a novel pre-training technique aimed at enhancing the contextual understanding of paragraph-level text representations in large language models. Our methodology leverages a self-attention-driven pointer network to restore the original sequence of shuffled text segments, addressing the challenge of capturing the structural coherence and contextual dependencies within documents. This pre-training approach is complemented by a fine-tuning methodology that incorporates dynamic sampling, augmenting the diversity of training instances and improving sample efficiency for various downstream applications. We evaluate our method on a diverse set of datasets, demonstrating its efficacy in tasks requiring sequential text classification across scientific literature and financial reporting domains. Our experiments show that pointer-guided pre-training significantly enhances the model's ability to understand complex document structures, leading to state-of-the-art performance in downstream classification tasks.

北京阿比特科技有限公司