亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Goal hijacking is a type of adversarial attack on Large Language Models (LLMs) where the objective is to manipulate the model into producing a specific, predetermined output, regardless of the user's original input. In goal hijacking, an attacker typically appends a carefully crafted malicious suffix to the user's prompt, which coerces the model into ignoring the user's original input and generating the target response. In this paper, we introduce a novel goal hijacking attack method called Pseudo-Conversation Injection, which leverages the weaknesses of LLMs in role identification within conversation contexts. Specifically, we construct the suffix by fabricating responses from the LLM to the user's initial prompt, followed by a prompt for a malicious new task. This leads the model to perceive the initial prompt and fabricated response as a completed conversation, thereby executing the new, falsified prompt. Following this approach, we propose three Pseudo-Conversation construction strategies: Targeted Pseudo-Conversation, Universal Pseudo-Conversation, and Robust Pseudo-Conversation. These strategies are designed to achieve effective goal hijacking across various scenarios. Our experiments, conducted on two mainstream LLM platforms including ChatGPT and Qwen, demonstrate that our proposed method significantly outperforms existing approaches in terms of attack effectiveness.

相關內容

Computed Tomography (CT) is a widely used imaging technique that provides detailed cross-sectional views of objects. Over the past decade, Deep Learning-based Reconstruction (DLR) methods have led efforts to enhance image quality and reduce noise, yet they often require large amounts of data and are computationally intensive. Inspired by recent advancements in scene reconstruction, some approaches have adapted NeRF and 3D Gaussian Splatting (3DGS) techniques for CT reconstruction. However, these methods are not ideal for direct 3D volume reconstruction. In this paper, we reconsider the representation of CT reconstruction and propose a novel Discretized Gaussian Representation (DGR) specifically designed for CT. Unlike the popular 3D Gaussian Splatting, our representation directly reconstructs the 3D volume using a set of discretized Gaussian functions in an end-to-end manner. Additionally, we introduce a Fast Volume Reconstruction technique that efficiently aggregates the contributions of these Gaussians into a discretized volume. Extensive experiments on both real-world and synthetic datasets demonstrate the effectiveness of our method in improving reconstruction quality and computational efficiency. Our code has been provided for review purposes and will be made publicly available upon acceptance.

We consider the problem of model compression for Large Language Models (LLMs) at post-training time, where the task is to compress a well-trained model using only a small set of calibration input data. In this work, we introduce a new low-rank approach to correct for quantization errors of \emph{activations} in LLMs: we propose to add low-rank weight matrices in full precision that act on the \emph{unquantized} activations. We then solve a joint optimization problem over the quantized representation of the weights and additional low-rank weight matrices to quantize both weights and activations. We focus on the case of 4-bit weight-and-activation quantization (W4A4). Using ranks equivalent to 10\% of the original weight matrix size, our approach reduces the accuracy gap with the original model by more than 50\%. Using ranks equivalent to 30\% of the original weight matrix, the accuracy gap is closed completely. We demonstrate our results on four recent LLMs, namely Llama-2, Llama-3, Phi-3 and Mixtral models.

Multimodal Variational Autoencoders (VAEs) represent a promising group of generative models that facilitate the construction of a tractable posterior within the latent space given multiple modalities. Previous studies have shown that as the number of modalities increases, the generative quality of each modality declines. In this study, we explore an alternative approach to enhance the generative performance of multimodal VAEs by jointly modeling the latent space of independently trained unimodal VAEs using score-based models (SBMs). The role of the SBM is to enforce multimodal coherence by learning the correlation among the latent variables. Consequently, our model combines a better generative quality of unimodal VAEs with coherent integration across different modalities using the latent score-based model. In addition, our approach provides the best unconditional coherence.

Despite the success of CNN models on a variety of Image classification and segmentation tasks, their extensive computational and storage demands pose considerable challenges for real-world deployment on resource constrained devices. Quantization is one technique that aims to alleviate these large storage requirements and speed up the inference process by reducing the precision of model parameters to lower-bit representations. In this paper, we introduce a novel post-training quantization method for model weights. Our method finds optimal clipping thresholds and scaling factors along with mathematical guarantees that our method minimizes quantization noise. Empirical results on Real World Datasets demonstrate that our quantization scheme significantly reduces model size and computational requirements while preserving model accuracy.

Graph Neural Networks (GNNs) have been shown as promising solutions for collaborative filtering (CF) with the modeling of user-item interaction graphs. The key idea of existing GNN-based recommender systems is to recursively perform the message passing along the user-item interaction edge for refining the encoded embeddings. Despite their effectiveness, however, most of the current recommendation models rely on sufficient and high-quality training data, such that the learned representations can well capture accurate user preference. User behavior data in many practical recommendation scenarios is often noisy and exhibits skewed distribution, which may result in suboptimal representation performance in GNN-based models. In this paper, we propose SHT, a novel Self-Supervised Hypergraph Transformer framework (SHT) which augments user representations by exploring the global collaborative relationships in an explicit way. Specifically, we first empower the graph neural CF paradigm to maintain global collaborative effects among users and items with a hypergraph transformer network. With the distilled global context, a cross-view generative self-supervised learning component is proposed for data augmentation over the user-item interaction graph, so as to enhance the robustness of recommender systems. Extensive experiments demonstrate that SHT can significantly improve the performance over various state-of-the-art baselines. Further ablation studies show the superior representation ability of our SHT recommendation framework in alleviating the data sparsity and noise issues. The source code and evaluation datasets are available at: //github.com/akaxlh/SHT.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司