亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Relation extraction (RE) is a fundamental task in natural language processing, aiming to identify relations between target entities in text. While many RE methods are designed for a single sentence or document, cross-document RE has emerged to address relations across multiple long documents. Given the nature of long documents in cross-document RE, extracting document embeddings is challenging due to the length constraints of pre-trained language models. Therefore, we propose REward-based Input Construction (REIC), the first learning-based sentence selector for cross-document RE. REIC extracts sentences based on relational evidence, enabling the RE module to effectively infer relations. Since supervision of evidence sentences is generally unavailable, we train REIC using reinforcement learning with RE prediction scores as rewards. Experimental results demonstrate the superiority of our method over heuristic methods for different RE structures and backbones in cross-document RE. Our code is publicly available at //github.com/aailabkaist/REIC.

相關內容

IEEE國際需求工程會議是研究人員、實踐者、教育工作者和學生展示和討論需求工程學科最新創新、經驗和關注點的首要國際論壇。這次會議將為學術界、政府和工業界提供一個廣泛的項目,其中包括幾位杰出的主旨演講人和三天的會議,會議內容包括論文、專題討論、海報和演示。官網鏈接: · 編譯器 · 多樣性 · Performer · TOOLS ·
2024 年 7 月 12 日

Hash algorithms are fundamental tools in cryptography, offering irreversible and sensitive transformations of input data for various security purposes. As computing architectures evolve towards heterogeneous systems, efficiently harnessing diverse computing resources for hash encryption algorithms becomes crucial. This paper presents HETOCompiler, a novel cryptography compilation framework designed for heterogeneous systems. Leveraging Multi-Level Intermediate Representation (MLIR), HETOCompiler abstracts syntax and semantics for cryptographic primitives and heterogeneous computing models, facilitating efficient compilation of high-level hash encryption algorithms into executable programs compatible with diverse devices. Experimental results demonstrate significant performance improvements over existing OpenSSL library, with average enhancements of 49.3x, 1.5x, and 23.4x for SHA-1, MD5, and SM3 algorithms respectively.

Large language models (LLMs) with in-context learning have significantly improved the performance of text-to-SQL task. Previous works generally focus on using exclusive SQL generation prompt to improve the LLMs' reasoning ability. However, they are mostly hard to handle large databases with numerous tables and columns, and usually ignore the significance of pre-processing database and extracting valuable information for more efficient prompt engineering. Based on above analysis, we propose RB-SQL, a novel retrieval-based LLM framework for in-context prompt engineering, which consists of three modules that retrieve concise tables and columns as schema, and targeted examples for in-context learning. Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.

We introduce a practical sign-dependent sequence selection metric for probabilistic amplitude shaping and propose a simple method to predict the gains in signal-to-noise ratio (SNR) for sequence selection. The proposed metric provides a $0.5$ dB SNR gain for single-polarized 256-QAM transmission over a long-haul fiber link.

Preference-based reinforcement learning (PbRL) is emerging as a promising approach to teaching robots through human comparative feedback, sidestepping the need for complex reward engineering. However, the substantial volume of feedback required in existing PbRL methods often lead to reliance on synthetic feedback generated by scripted teachers. This approach necessitates intricate reward engineering again and struggles to adapt to the nuanced preferences particular to human-robot interaction (HRI) scenarios, where users may have unique expectations toward the same task. To address these challenges, we introduce PrefCLM, a novel framework that utilizes crowdsourced large language models (LLMs) as simulated teachers in PbRL. We utilize Dempster-Shafer Theory to fuse individual preferences from multiple LLM agents at the score level, efficiently leveraging their diversity and collective intelligence. We also introduce a human-in-the-loop pipeline that facilitates collective refinements based on user interactive feedback. Experimental results across various general RL tasks show that PrefCLM achieves competitive performance compared to traditional scripted teachers and excels in facilitating more more natural and efficient behaviors. A real-world user study (N=10) further demonstrates its capability to tailor robot behaviors to individual user preferences, significantly enhancing user satisfaction in HRI scenarios.

As the application of federated learning becomes increasingly widespread, the issue of imbalanced training data distribution has emerged as a significant challenge. Federated learning utilizes local data stored on different training clients for model training, rather than centralizing data on a server, thereby greatly enhancing the privacy and security of training data. However, the distribution of training data across different clients may be imbalanced, with different categories of data potentially residing on different clients. This presents a challenge to traditional federated learning, which assumes data distribution is independent and identically distributed (IID). This paper proposes a Blockchain-based Federated Learning Model for Non-IID Data (BFLN), which combines federated learning with blockchain technology. By introducing a new aggregation method and incentive algorithm, BFLN enhances the model performance of federated learning on non-IID data. Experiments on public datasets demonstrate that, compared to other state-of-the-art models, BFLN improves training accuracy and provides a sustainable incentive mechanism for personalized federated learning.

Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.

Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.

To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司