亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spiking Neural Networks (SNNs) have been widely praised for their high energy efficiency and immense potential. However, comprehensive research that critically contrasts and correlates SNNs with quantized Artificial Neural Networks (ANNs) remains scant, often leading to skewed comparisons lacking fairness towards ANNs. This paper introduces a unified perspective, illustrating that the time steps in SNNs and quantized bit-widths of activation values present analogous representations. Building on this, we present a more pragmatic and rational approach to estimating the energy consumption of SNNs. Diverging from the conventional Synaptic Operations (SynOps), we champion the "Bit Budget" concept. This notion permits an intricate discourse on strategically allocating computational and storage resources between weights, activation values, and temporal steps under stringent hardware constraints. Guided by the Bit Budget paradigm, we discern that pivoting efforts towards spike patterns and weight quantization, rather than temporal attributes, elicits profound implications for model performance. Utilizing the Bit Budget for holistic design consideration of SNNs elevates model performance across diverse data types, encompassing static imagery and neuromorphic datasets. Our revelations bridge the theoretical chasm between SNNs and quantized ANNs and illuminate a pragmatic trajectory for future endeavors in energy-efficient neural computations.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The emergence of pretrained models has significantly impacted Natural Language Processing (NLP) and Computer Vision to relational datasets. Traditionally, these models are assessed through fine-tuned downstream tasks. However, this raises the question of how to evaluate these models more efficiently and more effectively. In this study, we explore a novel approach where we leverage the meta features associated with each entity as a source of worldly knowledge and employ entity representations from the models. We propose using the consistency between these representations and the meta features as a metric for evaluating pretrained models. Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.

Bayesian Neural Networks (BayNNs) can inherently estimate predictive uncertainty, facilitating informed decision-making. Dropout-based BayNNs are increasingly implemented in spintronics-based computation-in-memory architectures for resource-constrained yet high-performance safety-critical applications. Although uncertainty estimation is important, the reliability of Dropout generation and BayNN computation is equally important for target applications but is overlooked in existing works. However, testing BayNNs is significantly more challenging compared to conventional NNs, due to their stochastic nature. In this paper, we present for the first time the model of the non-idealities of the spintronics-based Dropout module and analyze their impact on uncertainty estimates and accuracy. Furthermore, we propose a testing framework based on repeatability ranking for Dropout-based BayNN with up to $100\%$ fault coverage while using only $0.2\%$ of training data as test vectors.

Large Language Models (LLMs) have experienced a rapid rise in AI, changing a wide range of applications with their advanced capabilities. As these models become increasingly integral to decision-making, the need for thorough interpretability has never been more critical. Mechanistic Interpretability offers a pathway to this understanding by identifying and analyzing specific sub-networks or 'circuits' within these complex systems. A crucial aspect of this approach is Automated Circuit Discovery, which facilitates the study of large models like GPT4 or LLAMA in a feasible manner. In this context, our research evaluates a recent method, Brain-Inspired Modular Training (BIMT), designed to enhance the interpretability of neural networks. We demonstrate how BIMT significantly improves the efficiency and quality of Automated Circuit Discovery, overcoming the limitations of manual methods. Our comparative analysis further reveals that BIMT outperforms existing models in terms of circuit quality, discovery time, and sparsity. Additionally, we provide a comprehensive computational analysis of BIMT, including aspects such as training duration, memory allocation requirements, and inference speed. This study advances the larger objective of creating trustworthy and transparent AI systems in addition to demonstrating how well BIMT works to make neural networks easier to understand.

As IoT devices become widely, it is crucial to protect them from malicious intrusions. However, the data scarcity of IoT limits the applicability of traditional intrusion detection methods, which are highly data-dependent. To address this, in this paper we propose the Open-Set Dandelion Network (OSDN) based on unsupervised heterogeneous domain adaptation in an open-set manner. The OSDN model performs intrusion knowledge transfer from the knowledge-rich source network intrusion domain to facilitate more accurate intrusion detection for the data-scarce target IoT intrusion domain. Under the open-set setting, it can also detect newly-emerged target domain intrusions that are not observed in the source domain. To achieve this, the OSDN model forms the source domain into a dandelion-like feature space in which each intrusion category is compactly grouped and different intrusion categories are separated, i.e., simultaneously emphasising inter-category separability and intra-category compactness. The dandelion-based target membership mechanism then forms the target dandelion. Then, the dandelion angular separation mechanism achieves better inter-category separability, and the dandelion embedding alignment mechanism further aligns both dandelions in a finer manner. To promote intra-category compactness, the discriminating sampled dandelion mechanism is used. Assisted by the intrusion classifier trained using both known and generated unknown intrusion knowledge, a semantic dandelion correction mechanism emphasises easily-confused categories and guides better inter-category separability. Holistically, these mechanisms form the OSDN model that effectively performs intrusion knowledge transfer to benefit IoT intrusion detection. Comprehensive experiments on several intrusion datasets verify the effectiveness of the OSDN model, outperforming three state-of-the-art baseline methods by 16.9%.

Recent years have witnessed a surge in the popularity of Machine Learning (ML), applied across diverse domains. However, progress is impeded by the scarcity of training data due to expensive acquisition and privacy legislation. Synthetic data emerges as a solution, but the abundance of released models and limited overview literature pose challenges for decision-making. This work surveys 417 Synthetic Data Generation (SDG) models over the last decade, providing a comprehensive overview of model types, functionality, and improvements. Common attributes are identified, leading to a classification and trend analysis. The findings reveal increased model performance and complexity, with neural network-based approaches prevailing, except for privacy-preserving data generation. Computer vision dominates, with GANs as primary generative models, while diffusion models, transformers, and RNNs compete. Implications from our performance evaluation highlight the scarcity of common metrics and datasets, making comparisons challenging. Additionally, the neglect of training and computational costs in literature necessitates attention in future research. This work serves as a guide for SDG model selection and identifies crucial areas for future exploration.

With their exceptional natural language processing capabilities, tools based on Large Language Models (LLMs) like ChatGPT and Co-Pilot have swiftly become indispensable resources in the software developer's toolkit. While recent studies suggest the potential productivity gains these tools can unlock, users still encounter drawbacks, such as generic or incorrect answers. Additionally, the pursuit of improved responses often leads to extensive prompt engineering efforts, diverting valuable time from writing code that delivers actual value. To address these challenges, a new breed of tools, built atop LLMs, is emerging. These tools aim to mitigate drawbacks by employing techniques like fine-tuning or enriching user prompts with contextualized information. In this paper, we delve into the lessons learned by a software development team venturing into the creation of such a contextualized LLM-based application, using retrieval-based techniques, called CodeBuddy. Over a four-month period, the team, despite lacking prior professional experience in LLM-based applications, built the product from scratch. Following the initial product release, we engaged with the development team responsible for the code generative components. Through interviews and analysis of the application's issue tracker, we uncover various intriguing challenges that teams working on LLM-based applications might encounter. For instance, we found three main group of lessons: LLM-based lessons, User-based lessons, and Technical lessons. By understanding these lessons, software development teams could become better prepared to build LLM-based applications.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司