Efficiently approximating local curvature information of the loss function is a key tool for optimization and compression of deep neural networks. Yet, most existing methods to approximate second-order information have high computational or storage costs, which can limit their practicality. In this work, we investigate matrix-free, linear-time approaches for estimating Inverse-Hessian Vector Products (IHVPs) for the case when the Hessian can be approximated as a sum of rank-one matrices, as in the classic approximation of the Hessian by the empirical Fisher matrix. We propose two new algorithms as part of a framework called M-FAC: the first algorithm is tailored towards network compression and can compute the IHVP for dimension $d$, if the Hessian is given as a sum of $m$ rank-one matrices, using $O(dm^2)$ precomputation, $O(dm)$ cost for computing the IHVP, and query cost $O(m)$ for any single element of the inverse Hessian. The second algorithm targets an optimization setting, where we wish to compute the product between the inverse Hessian, estimated over a sliding window of optimization steps, and a given gradient direction, as required for preconditioned SGD. We give an algorithm with cost $O(dm + m^2)$ for computing the IHVP and $O(dm + m^3)$ for adding or removing any gradient from the sliding window. These two algorithms yield state-of-the-art results for network pruning and optimization with lower computational overhead relative to existing second-order methods. Implementations are available at [9] and [17].
In this work, we study a variant of nonnegative matrix factorization where we wish to find a symmetric factorization of a given input matrix into a sparse, Boolean matrix. Formally speaking, given $\mathbf{M}\in\mathbb{Z}^{m\times m}$, we want to find $\mathbf{W}\in\{0,1\}^{m\times r}$ such that $\| \mathbf{M} - \mathbf{W}\mathbf{W}^\top \|_0$ is minimized among all $\mathbf{W}$ for which each row is $k$-sparse. This question turns out to be closely related to a number of questions like recovering a hypergraph from its line graph, as well as reconstruction attacks for private neural network training. As this problem is hard in the worst-case, we study a natural average-case variant that arises in the context of these reconstruction attacks: $\mathbf{M} = \mathbf{W}\mathbf{W}^{\top}$ for $\mathbf{W}$ a random Boolean matrix with $k$-sparse rows, and the goal is to recover $\mathbf{W}$ up to column permutation. Equivalently, this can be thought of as recovering a uniformly random $k$-uniform hypergraph from its line graph. Our main result is a polynomial-time algorithm for this problem based on bootstrapping higher-order information about $\mathbf{W}$ and then decomposing an appropriate tensor. The key ingredient in our analysis, which may be of independent interest, is to show that such a matrix $\mathbf{W}$ has full column rank with high probability as soon as $m = \widetilde{\Omega}(r)$, which we do using tools from Littlewood-Offord theory and estimates for binary Krawtchouk polynomials.
In the $(1+\varepsilon,r)$-approximate near-neighbor problem for curves (ANNC) under some distance measure $\delta$, the goal is to construct a data structure for a given set $\mathcal{C}$ of curves that supports approximate near-neighbor queries: Given a query curve $Q$, if there exists a curve $C\in\mathcal{C}$ such that $\delta(Q,C)\le r$, then return a curve $C'\in\mathcal{C}$ with $\delta(Q,C')\le(1+\varepsilon)r$. There exists an efficient reduction from the $(1+\varepsilon)$-approximate nearest-neighbor problem to ANNC, where in the former problem the answer to a query is a curve $C\in\mathcal{C}$ with $\delta(Q,C)\le(1+\varepsilon)\cdot\delta(Q,C^*)$, where $C^*$ is the curve of $\mathcal{C}$ closest to $Q$. Given a set $\mathcal{C}$ of $n$ curves, each consisting of $m$ points in $d$ dimensions, we construct a data structure for ANNC that uses $n\cdot O(\frac{1}{\varepsilon})^{md}$ storage space and has $O(md)$ query time (for a query curve of length $m$), where the similarity between two curves is their discrete Fr\'echet or dynamic time warping distance. Our method is simple to implement, deterministic, and results in an exponential improvement in both query time and storage space compared to all previous bounds. Further, we also consider the asymmetric version of ANNC, where the length of the query curves is $k \ll m$, and obtain essentially the same storage and query bounds as above, except that $m$ is replaced by $k$. Finally, we apply our method to a version of approximate range counting for curves and achieve similar bounds.
We give a quantum speedup for solving the canonical semidefinite programming relaxation for binary quadratic optimization. This class of relaxations for combinatorial optimization has so far eluded quantum speedups. Our methods combine ideas from quantum Gibbs sampling and matrix exponent updates. A de-quantization of the algorithm also leads to a faster classical solver. For generic instances, our quantum solver gives a nearly quadratic speedup over state-of-the-art algorithms. Such instances include approximating the ground state of spin glasses and MaxCut on Erd\"{o}s-R\'enyi graphs. We also provide an efficient randomized rounding procedure that converts approximately optimal SDP solutions into approximations of the original quadratic optimization problem.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
Multiplying matrices is among the most fundamental and compute-intensive operations in machine learning. Consequently, there has been significant work on efficiently approximating matrix multiplies. We introduce a learning-based algorithm for this task that greatly outperforms existing methods. Experiments using hundreds of matrices from diverse domains show that it often runs $100\times$ faster than exact matrix products and $10\times$ faster than current approximate methods. In the common case that one matrix is known ahead of time, our method also has the interesting property that it requires zero multiply-adds. These results suggest that a mixture of hashing, averaging, and byte shuffling$-$the core operations of our method$-$could be a more promising building block for machine learning than the sparsified, factorized, and/or scalar quantized matrix products that have recently been the focus of substantial research and hardware investment.
In this paper, from a theoretical perspective, we study how powerful graph neural networks (GNNs) can be for learning approximation algorithms for combinatorial problems. To this end, we first establish a new class of GNNs that can solve strictly a wider variety of problems than existing GNNs. Then, we bridge the gap between GNN theory and the theory of distributed local algorithms to theoretically demonstrate that the most powerful GNN can learn approximation algorithms for the minimum dominating set problem and the minimum vertex cover problem with some approximation ratios and that no GNN can perform better than with these ratios. This paper is the first to elucidate approximation ratios of GNNs for combinatorial problems. Furthermore, we prove that adding coloring or weak-coloring to each node feature improves these approximation ratios. This indicates that preprocessing and feature engineering theoretically strengthen model capabilities.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.
This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.