The advent of the Internet of Things (IoT) era, where billions of devices and sensors are becoming more and more connected and ubiquitous, is putting a strain on traditional terrestrial networks, that may no longer be able to fulfill service requirements efficiently. This issue is further complicated in rural and remote areas with scarce and low-quality cellular coverage. To fill this gap, the research community is focusing on non-terrestrial networks (NTNs), where Unmanned Aerial Vehicles (UAVs), High Altitude Platforms (HAPs) and satellites can serve as aerial/space gateways to aggregate, process, and relay the IoT traffic. In this paper we demonstrate this paradigm, and evaluate how common Low-Power Wide Area Network (LPWAN) technologies, designed and developed to operate for IoT systems, work in NTNs. We then formalize an optimization problem to decide whether and how IoT traffic can be offloaded to LEO satellites to reduce the burden on terrestrial gateways.
Personalized treatment effect estimates are often of interest in high-stakes applications -- thus, before deploying a model estimating such effects in practice, one needs to be sure that the best candidate from the ever-growing machine learning toolbox for this task was chosen. Unfortunately, due to the absence of counterfactual information in practice, it is usually not possible to rely on standard validation metrics for doing so, leading to a well-known model selection dilemma in the treatment effect estimation literature. While some solutions have recently been investigated, systematic understanding of the strengths and weaknesses of different model selection criteria is still lacking. In this paper, instead of attempting to declare a global `winner', we therefore empirically investigate success- and failure modes of different selection criteria. We highlight that there is a complex interplay between selection strategies, candidate estimators and the DGP used for testing, and provide interesting insights into the relative (dis)advantages of different criteria alongside desiderata for the design of further illuminating empirical studies in this context.
We study the integration problem on Hilbert spaces of (multivariate) periodic functions. The standard technique to prove lower bounds for the error of quadrature rules uses bump functions and the pigeon hole principle. Recently, several new lower bounds have been obtained using a different technique which exploits the Hilbert space structure and a variant of the Schur product theorem. The purpose of this paper is to (a) survey the new proof technique, (b) show that it is indeed superior to the bump-function technique, and (c) sharpen and extend the results from the previous papers.
An assisted living facility (ALF) is a place where someone can live, have access to social supports such as transportation, and receive assistance with the activities of daily living such as toileting and dressing. Despite the important role of ALFs, they are not required to be certified with Medicare and there is no public national database of these facilities. We present the first public dataset of ALFs in the United States, covering all 50 states and DC with 44,638 facilities and over 1.2 million beds. This dataset can help provide answers to existing public health questions as well as help those in need find a facility. The dataset was validated by replicating the results of a nationwide study of ALFs that uses closed data [4], where the prevalence of ALFs is assessed with respect to county-level socioeconomic variables related to health disparity such as race, disability, and income. To showcase the value of this dataset, we also propose a novel metric to assess access to community-based care. We calculate the average distance an individual in need must travel in order to reach an ALF. The dataset and all relevant code are available at github.com/antonstengel/assisted-living-data.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.