亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Program verifiers for imperative languages such as C may be annotation-based, in which assertions and invariants are put into source files and then checked, or tactic-based, where proof scripts separate from programs are interactively developed in a proof assistant such as Coq. Annotation verifiers have been more automated and convenient, but some interactive verifiers have richer assertion languages and formal proofs of soundness. We present VST-A, an annotation verifier that uses the rich assertion language of VST, leverages the formal soundness proof of VST, but allows users to describe functional correctness proofs intuitively by inserting assertions. VST-A analyzes control flow graphs, decomposes every C function into control flow paths between assertions, and reduces program verification problems into corresponding straightline Hoare triples. Compared to existing foundational program verification tools like VST and Iris, in VST-A, such decompositions and reductions are allowed to be nonstructural, which makes VST-A more flexible to use. VST-A's decomposition and reduction is defined in Coq, proved sound in Coq, and computed in a call-by-value way in Coq. The soundness proof for reduction is totally logical, independent of the complicated semantic model (and soundness proof) of VST's Hoare triple. Because of the rich assertion language, not all reduced proof goals can be automatically checked, but the system allows users to prove residual proof goals using the full power of the Coq proof assistant.

相關內容

Legal Judgment Prediction (LJP) is a judicial assistance system that recommends the legal components such as applicable statues, prison term and penalty term by analyzing the given input case document. Indian legal system is in the need of technical assistance such as artificial intelligence to solve the crores of pending cases in various courts for years and its being increased day to day. Most of the existing Indian models did not adequately concentrate on the semantics embedded in the fact description (FD) that impacts the decision. The proposed semantic extraction based LJP (SLJP) model provides the advantages of pretrained transformers for complex unstructured legal case document understanding and to generate embeddings. The model draws the in-depth semantics of the given FD at multiple levels i.e., chunk and case document level by following the divide and conquer approach. It creates the concise view of the given fact description using the extracted semantics as per the original court case document structure and predicts judgment using attention mechanism. We tested the model performance on two available Indian datasets Indian Legal Documents corpus (ILDC) and Indian Legal Statue Identification (ILSI) and got promising results. Also shown the highest performance and less performance degradation for increased epochs than base models on ILDC dataset.

With recent advancements in large language models, methods like chain-of-thought prompting to elicit reasoning chains have been shown to improve results on reasoning tasks. However, tasks that require multiple steps of reasoning still pose significant challenges to state-of-the-art models. Drawing inspiration from the beam search algorithm, we propose PathFinder, a tree-search-based reasoning path generation approach. It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding, enabled by varying sampling methods and parameters. Using constrained reasoning, PathFinder integrates novel quality constraints, pruning, and exploration methods to enhance the efficiency and the quality of generation. Moreover, it includes scoring and ranking features to improve candidate selection. Our approach outperforms competitive baselines on three complex arithmetic and commonsense reasoning tasks by 6% on average. Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.

Generative large language models (LLMs) have opened up numerous novel possibilities, but due to their significant computational requirements their ubiquitous use remains challenging. Some of the most useful applications require processing large numbers of samples at a time and using long contexts, both significantly increasing the memory communication load of the models. We introduce SparQ Attention, a technique for increasing the inference throughput of LLMs by reducing the memory bandwidth requirements within the attention blocks through selective fetching of the cached history. Our proposed technique can be applied directly to off-the-shelf LLMs during inference, without requiring any modification to the pre-training setup or additional fine-tuning. We show how SparQ Attention can decrease the attention memory bandwidth requirements up to eight times without any loss in accuracy by evaluating Llama 2 and Pythia models on a wide range of downstream tasks.

In recent years, pre-trained large language models (LLMs) have achieved tremendous success in the field of Natural Language Processing (NLP). Prior studies have primarily focused on general and generic domains, with relatively less research on specialized LLMs in the medical field. The specialization and high accuracy requirements for diagnosis in the medical field, as well as the challenges in collecting large-scale data, have constrained the application and development of LLMs in medical scenarios. In the field of ophthalmology, clinical diagnosis mainly relies on doctors' interpretation of reports and making diagnostic decisions. In order to take advantage of LLMs to provide decision support for doctors, we collected three modalities of ophthalmic report data and fine-tuned the LLaMA2 model, successfully constructing an LLM termed the "Ophtha-LLaMA2" specifically tailored for ophthalmic disease diagnosis. Inference test results show that even with a smaller fine-tuning dataset, Ophtha-LLaMA2 performs significantly better in ophthalmic diagnosis compared to other LLMs. It demonstrates that the Ophtha-LLaMA2 exhibits satisfying accuracy and efficiency in ophthalmic disease diagnosis, making it a valuable tool for ophthalmologists to provide improved diagnostic support for patients. This research provides a useful reference for the application of LLMs in the field of ophthalmology, while showcasing the immense potential and prospects in this domain.

Deep neural networks (DNNs) are vulnerable to adversarial perturbation, where an imperceptible perturbation is added to the image that can fool the DNNs. Diffusion-based adversarial purification focuses on using the diffusion model to generate a clean image against such adversarial attacks. Unfortunately, the generative process of the diffusion model is also inevitably affected by adversarial perturbation since the diffusion model is also a deep network where its input has adversarial perturbation. In this work, we propose MimicDiffusion, a new diffusion-based adversarial purification technique, that directly approximates the generative process of the diffusion model with the clean image as input. Concretely, we analyze the differences between the guided terms using the clean image and the adversarial sample. After that, we first implement MimicDiffusion based on Manhattan distance. Then, we propose two guidance to purify the adversarial perturbation and approximate the clean diffusion model. Extensive experiments on three image datasets including CIFAR-10, CIFAR-100, and ImageNet with three classifier backbones including WideResNet-70-16, WideResNet-28-10, and ResNet50 demonstrate that MimicDiffusion significantly performs better than the state-of-the-art baselines. On CIFAR-10, CIFAR-100, and ImageNet, it achieves 92.67\%, 61.35\%, and 61.53\% average robust accuracy, which are 18.49\%, 13.23\%, and 17.64\% higher, respectively. The code is available in the supplementary material.

Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司