We investigate which loss functions provide better separations via benchmarking an extensive set of those for music source separation. To that end, we first survey the most representative audio source separation losses we identified, to later consistently benchmark them in a controlled experimental setup. We also explore using such losses as evaluation metrics, via cross-correlating them with the results of a subjective test. Based on the observation that the standard signal-to-distortion ratio metric can be misleading in some scenarios, we study alternative evaluation metrics based on the considered losses.
Zero-shot text classifiers based on label descriptions embed an input text and a set of labels into the same space: measures such as cosine similarity can then be used to select the most similar label description to the input text as the predicted label. In a true zero-shot setup, designing good label descriptions is challenging because no development set is available. Inspired by the literature on Learning with Disagreements, we look at how probabilistic models of repeated rating analysis can be used for selecting the best label descriptions in an unsupervised fashion. We evaluate our method on a set of diverse datasets and tasks (sentiment, topic and stance). Furthermore, we show that multiple, noisy label descriptions can be aggregated to boost the performance.
Current practices in metric evaluation focus on one single dataset, e.g., Newstest dataset in each year's WMT Metrics Shared Task. However, in this paper, we qualitatively and quantitatively show that the performances of metrics are sensitive to data. The ranking of metrics varies when the evaluation is conducted on different datasets. Then this paper further investigates two potential hypotheses, i.e., insignificant data points and the deviation of Independent and Identically Distributed (i.i.d) assumption, which may take responsibility for the issue of data variance. In conclusion, our findings suggest that when evaluating automatic translation metrics, researchers should take data variance into account and be cautious to claim the result on a single dataset, because it may leads to inconsistent results with most of other datasets.
Music source separation with both paired mixed signals and source signals has obtained substantial progress over the years. However, this setting highly relies on large amounts of paired data. Source-only supervision decouples the process of learning a mapping from a mixture to particular sources into a two stage paradigm: source modeling and separation. Recent systems under source-only supervision either achieve good performance in synthetic toy experiments or limited performance in music separation task. In this paper, we leverage flow-based implicit generators to train music source priors and likelihood based objective to separate music mixtures. Experiments show that in singing voice and music separation tasks, our proposed systems achieve competitive results to one of the full supervision systems. We also demonstrate one variant of our proposed systems is capable of separating new source tracks effortlessly.
The link prediction task on knowledge graphs without explicit negative triples in the training data motivates the usage of rank-based metrics. Here, we review existing rank-based metrics and propose desiderata for improved metrics to address lack of interpretability and comparability of existing metrics to datasets of different sizes and properties. We introduce a simple theoretical framework for rank-based metrics upon which we investigate two avenues for improvements to existing metrics via alternative aggregation functions and concepts from probability theory. We finally propose several new rank-based metrics that are more easily interpreted and compared accompanied by a demonstration of their usage in a benchmarking of knowledge graph embedding models.
In this work we present point-level region contrast, a self-supervised pre-training approach for the task of object detection. This approach is motivated by the two key factors in detection: localization and recognition. While accurate localization favors models that operate at the pixel- or point-level, correct recognition typically relies on a more holistic, region-level view of objects. Incorporating this perspective in pre-training, our approach performs contrastive learning by directly sampling individual point pairs from different regions. Compared to an aggregated representation per region, our approach is more robust to the change in input region quality, and further enables us to implicitly improve initial region assignments via online knowledge distillation during training. Both advantages are important when dealing with imperfect regions encountered in the unsupervised setting. Experiments show point-level region contrast improves on state-of-the-art pre-training methods for object detection and segmentation across multiple tasks and datasets, and we provide extensive ablation studies and visualizations to aid understanding. Code will be made available.
We present a data-efficient framework for solving sequential decision-making problems which exploits the combination of reinforcement learning (RL) and latent variable generative models. The framework, called GenRL, trains deep policies by introducing an action latent variable such that the feed-forward policy search can be divided into two parts: (i) training a sub-policy that outputs a distribution over the action latent variable given a state of the system, and (ii) unsupervised training of a generative model that outputs a sequence of motor actions conditioned on the latent action variable. GenRL enables safe exploration and alleviates the data-inefficiency problem as it exploits prior knowledge about valid sequences of motor actions. Moreover, we provide a set of measures for evaluation of generative models such that we are able to predict the performance of the RL policy training prior to the actual training on a physical robot. We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training on two robotics tasks: shooting a hockey puck and throwing a basketball. Furthermore, we empirically demonstrate that GenRL is the only method which can safely and efficiently solve the robotics tasks compared to two state-of-the-art RL methods.
Modern web services routinely provide REST APIs for clients to access their functionality. These APIs present unique challenges and opportunities for automated testing, driving the recent development of many techniques and tools that generate test cases for API endpoints using various strategies. Understanding how these techniques compare to one another is difficult, as they have been evaluated on different benchmarks and using different metrics. To fill this gap, we performed an empirical study aimed to understand the landscape in automated testing of REST APIs and guide future research in this area. We first identified, through a systematic selection process, a set of 10 state-of-the-art REST API testing tools that included tools developed by both researchers and practitioners. We then applied these tools to a benchmark of 20 real-world open-source RESTful services and analyzed their performance in terms of code coverage achieved and unique failures triggered. This analysis allowed us to identify strengths, weaknesses, and limitations of the tools considered and of their underlying strategies, as well as implications of our findings for future research in this area.
Response selector is an essential component of generation-based dialogue systems and it aims to pick out an optimal response in a candidate pool to continue the dialogue. The current state-of-the-art methods are mainly based on the encoding paradigm called Cross-Encoder, which separately encodes each context-response pair and ranks the responses according to their fitness scores. However, Cross-Encoder repeatedly encodes the same lengthy context for each response, resulting in high computational costs. Moreover, without considering the relationship among the candidates, it is difficult to figure out which candidate is the best response purely based on the fitness score per candidate. We aim to address these problems through a new paradigm called Panoramic-Encoder. The proposed method encodes all candidates and the context at once and realizes the mutual interaction using a tailored candidate attention mechanism (CAM). It also enables the integration of some effective training techniques, such as the in-batch negative training, which cannot be used in Cross-Encoders. Extensive experiments across four benchmark datasets show that our new method significantly outperforms the current state-of-the-art with lower computational complexity.
Representation learning enables us to automatically extract generic feature representations from a dataset to solve another machine learning task. Recently, extracted feature representations by a representation learning algorithm and a simple predictor have exhibited state-of-the-art performance on several machine learning tasks. Despite its remarkable progress, there exist various ways to evaluate representation learning algorithms depending on the application because of the flexibility of representation learning. To understand the current representation learning, we review evaluation methods of representation learning algorithms and theoretical analyses. On the basis of our evaluation survey, we also discuss the future direction of representation learning. Note that this survey is the extended version of Nozawa and Sato (2022).
The past few years have witnessed an increasing interest in improving the perception performance of LiDARs on autonomous vehicles. While most of the existing works focus on developing new deep learning algorithms or model architectures, we study the problem from the physical design perspective, i.e., how different placements of multiple LiDARs influence the learning-based perception. To this end, we introduce an easy-to-compute information-theoretic surrogate metric to quantitatively and fast evaluate LiDAR placement for 3D detection of different types of objects. We also present a new data collection, detection model training and evaluation framework in the realistic CARLA simulator to evaluate disparate multi-LiDAR configurations. Using several prevalent placements inspired by the designs of self-driving companies, we show the correlation between our surrogate metric and object detection performance of different representative algorithms on KITTI through extensive experiments, validating the effectiveness of our LiDAR placement evaluation approach. Our results show that sensor placement is non-negligible in 3D point cloud-based object detection, which will contribute up to 10% performance discrepancy in terms of average precision in challenging 3D object detection settings. We believe that this is one of the first studies to quantitatively investigate the influence of LiDAR placement on perception performance.