亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Since ChatGPT has emerged as a major AIGC model, providing high-quality responses across a wide range of applications (including software development and maintenance), it has attracted much interest from many individuals. ChatGPT has great promise, but there are serious problems that might arise from its misuse, especially in the realms of education and public safety. Several AIGC detectors are available, and they have all been tested on genuine text. However, more study is needed to see how effective they are for multi-domain ChatGPT material. This study aims to fill this need by creating a multi-domain dataset for testing the state-of-the-art APIs and tools for detecting artificially generated information used by universities and other research institutions. A large dataset consisting of articles, abstracts, stories, news, and product reviews was created for this study. The second step is to use the newly created dataset to put six tools through their paces. Six different artificial intelligence (AI) text identification systems, including "GPTkit," "GPTZero," "Originality," "Sapling," "Writer," and "Zylalab," have accuracy rates between 55.29 and 97.0%. Although all the tools fared well in the evaluations, originality was particularly effective across the board.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · 向量化 · Pair · 成對型 · 極小點 ·
2023 年 11 月 20 日

The problem of robustly reconstructing an integer vector from its erroneous remainders appears in many applications in the field of multidimensional (MD) signal processing. To address this problem, a robust MD Chinese remainder theorem (CRT) was recently proposed for a special class of moduli, where the remaining integer matrices left-divided by a greatest common left divisor (gcld) of all the moduli are pairwise commutative and coprime. The strict constraint on the moduli limits the usefulness of the robust MD-CRT in practice. In this paper, we investigate the robust MD-CRT for a general set of moduli. We first introduce a necessary and sufficient condition on the difference between paired remainder errors, followed by a simple sufficient condition on the remainder error bound, for the robust MD-CRT for general moduli, where the conditions are associated with (the minimum distances of) these lattices generated by gcld's of paired moduli, and a closed-form reconstruction algorithm is presented. We then generalize the above results of the robust MD-CRT from integer vectors/matrices to real ones. Finally, we validate the robust MD-CRT for general moduli by employing numerical simulations, and apply it to MD sinusoidal frequency estimation based on multiple sub-Nyquist samplers.

As large language models (LLMs) permeate more and more applications, an assessment of their associated security risks becomes increasingly necessary. The potential for exploitation by malicious actors, ranging from disinformation to data breaches and reputation damage, is substantial. This paper addresses a gap in current research by focusing on the security risks posed by LLMs, which extends beyond the widely covered ethical and societal implications. Our work proposes a taxonomy of security risks along the user-model communication pipeline, explicitly focusing on prompt-based attacks on LLMs. We categorize the attacks by target and attack type within a prompt-based interaction scheme. The taxonomy is reinforced with specific attack examples to showcase the real-world impact of these risks. Through this taxonomy, we aim to inform the development of robust and secure LLM applications, enhancing their safety and trustworthiness.

As IoT devices become widely, it is crucial to protect them from malicious intrusions. However, the data scarcity of IoT limits the applicability of traditional intrusion detection methods, which are highly data-dependent. To address this, in this paper we propose the Open-Set Dandelion Network (OSDN) based on unsupervised heterogeneous domain adaptation in an open-set manner. The OSDN model performs intrusion knowledge transfer from the knowledge-rich source network intrusion domain to facilitate more accurate intrusion detection for the data-scarce target IoT intrusion domain. Under the open-set setting, it can also detect newly-emerged target domain intrusions that are not observed in the source domain. To achieve this, the OSDN model forms the source domain into a dandelion-like feature space in which each intrusion category is compactly grouped and different intrusion categories are separated, i.e., simultaneously emphasising inter-category separability and intra-category compactness. The dandelion-based target membership mechanism then forms the target dandelion. Then, the dandelion angular separation mechanism achieves better inter-category separability, and the dandelion embedding alignment mechanism further aligns both dandelions in a finer manner. To promote intra-category compactness, the discriminating sampled dandelion mechanism is used. Assisted by the intrusion classifier trained using both known and generated unknown intrusion knowledge, a semantic dandelion correction mechanism emphasises easily-confused categories and guides better inter-category separability. Holistically, these mechanisms form the OSDN model that effectively performs intrusion knowledge transfer to benefit IoT intrusion detection. Comprehensive experiments on several intrusion datasets verify the effectiveness of the OSDN model, outperforming three state-of-the-art baseline methods by 16.9%.

Compute Continuum (CC) systems comprise a vast number of devices distributed over computational tiers. Evaluating business requirements, i.e., Service Level Objectives (SLOs), requires collecting data from all those devices; if SLOs are violated, devices must be reconfigured to ensure correct operation. If done centrally, this dramatically increases the number of devices and variables that must be considered, while creating an enormous communication overhead. To address this, we (1) introduce a causality filter based on Markov blankets (MB) that limits the number of variables that each device must track, (2) evaluate SLOs decentralized on a device basis, and (3) infer optimal device configuration for fulfilling SLOs. We evaluated our methodology by analyzing video stream transformations and providing device configurations that ensure the Quality of Service (QoS). The devices thus perceived their environment and acted accordingly -- a form of decentralized intelligence.

Generative diffusion models, including Stable Diffusion and Midjourney, can generate visually appealing, diverse, and high-resolution images for various applications. These models are trained on billions of internet-sourced images, raising significant concerns about the potential unauthorized use of copyright-protected images. In this paper, we examine whether it is possible to determine if a specific image was used in the training set, a problem known in the cybersecurity community and referred to as a membership inference attack. Our focus is on Stable Diffusion, and we address the challenge of designing a fair evaluation framework to answer this membership question. We propose a methodology to establish a fair evaluation setup and apply it to Stable Diffusion, enabling potential extensions to other generative models. Utilizing this evaluation setup, we execute membership attacks (both known and newly introduced). Our research reveals that previously proposed evaluation setups do not provide a full understanding of the effectiveness of membership inference attacks. We conclude that the membership inference attack remains a significant challenge for large diffusion models (often deployed as black-box systems), indicating that related privacy and copyright issues will persist in the foreseeable future.

In most classification models, it has been assumed to have a single ground truth label for each data point. However, subjective tasks like toxicity classification can lead to genuine disagreement among annotators. In these cases aggregating labels will result in biased labeling and, consequently, biased models that can overlook minority opinions. Previous studies have shed light on the pitfalls of label aggregation and have introduced a handful of practical approaches to tackle this issue. Recently proposed multi-annotator models, which predict labels individually per annotator, are vulnerable to under-determination for annotators with small samples. This problem is especially the case in crowd-sourced datasets. In this work, we propose Annotator Aware Representations for Texts (AART) for subjective classification tasks. We will show the improvement of our method on metrics that assess the performance on capturing annotators' perspectives. Additionally, our approach involves learning representations for annotators, allowing for an exploration of the captured annotation behaviors.

Multivariate normal (MVN) probabilities arise in myriad applications, but they are analytically intractable and need to be evaluated via Monte-Carlo-based numerical integration. For the state-of-the-art minimax exponential tilting (MET) method, we show that the complexity of each of its components can be greatly reduced through an integrand parameterization that utilizes the sparse inverse Cholesky factor produced by the Vecchia approximation, whose approximation error is often negligible relative to the Monte-Carlo error. Based on this idea, we derive algorithms that can estimate MVN probabilities and sample from truncated MVN distributions in linear time (and that are easily parallelizable) at the same convergence or acceptance rate as MET, whose complexity is cubic in the dimension of the MVN probability. We showcase the advantages of our methods relative to existing approaches using several simulated examples. We also analyze a groundwater-contamination dataset with over twenty thousand censored measurements to demonstrate the scalability of our method for partially censored Gaussian-process models.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司