In this paper, we consider the standard quantum information decoupling, in which Alice aims to decouple her system from the environment by local operations and discarding some of her systems. To achieve an $\varepsilon$-decoupling with trace distance as the error criterion, we establish a near-optimal one-shot characterization for the largest dimension of the remainder system in terms of the conditional $(1-\varepsilon)$-hypothesis-testing entropy. When the underlying system is independent and identically prepared, our result leads to the matched second-order rate as well as the matched moderate deviation rate. As an application, we find an achievability bound in entanglement distillation protocol, where the objective is for Alice and Bob to transform their quantum state to maximally entangled state with largest possible dimension using only local operations and one-way classical communications.
We consider the imaging of cosmic strings by using Cosmic Microwave Background (CMB) data. Mathematically, we study the inversion of an X-ray transform in Lorentzian geometry, called the light ray transform. The inverse problem is highly ill-posed, with additional complexities of being large-scale and dynamic, with unknown parameters that represent multidimensional objects. This presents significant computational challenges for the numerical reconstruction of images that have high spatial and temporal resolution. In this paper, we begin with a microlocal stability analysis for inverting the light ray transform using the Landweber iteration. Next, we discretize the spatiotemporal object and light ray transform and consider iterative computational methods for solving the resulting inverse problem. We provide a numerical investigation and comparison of some advanced iterative methods for regularization including Tikhonov and sparsity-promoting regularizers for various example scalar functions with conormal type singularities.
Continuous sign language recognition (CSLR) aims to promote active and accessible communication for the hearing impaired, by recognizing signs in untrimmed sign language videos to textual glosses sequentially. The key challenge of CSLR is how to achieve the cross-modality alignment between videos and gloss sequences. However, the current cross-modality paradigms of CSLR overlook using the glosses context to guide the video clips for global temporal context alignment, which further affects the visual to gloss mapping and is detrimental to recognition performance. To tackle this problem, we propose a novel Denoising-Diffusion global Alignment (DDA), which consists of a denoising-diffusion autoencoder and DDA loss function. DDA leverages diffusion-based global alignment techniques to align video with gloss sequence, facilitating global temporal context alignment. Specifically, DDA first proposes the auxiliary condition diffusion to conduct the gloss-part noised bimodal representations for video and gloss sequence. To address the problem of the recognition-oriented alignment knowledge represented in the diffusion denoising process cannot be feedback. The DDA further proposes the Denoising-Diffusion Autoencoder, which adds a decoder in the auxiliary condition diffusion to denoise the partial noisy bimodal representations via the designed DDA loss in self-supervised. In the denoising process, each video clip representation of video can be reliably guided to re-establish the global temporal context between them via denoising the gloss sequence representation. Experiments on three public benchmarks demonstrate that our DDA achieves state-of-the-art performances and confirm the feasibility of DDA for video representation enhancement.
In this paper, we consider the design of data-driven predictive controllers for nonlinear systems from input-output data via linear-in-control input Koopman lifted models. Instead of identifying and simulating a Koopman model to predict future outputs, we design a subspace predictive controller in the Koopman space. This allows us to learn the observables minimizing the multi-step output prediction error of the Koopman subspace predictor, preventing the propagation of prediction errors. To avoid losing feasibility of our predictive control scheme due to prediction errors, we compute a terminal cost and terminal set in the Koopman space and we obtain recursive feasibility guarantees through an interpolated initial state. As a third contribution, we introduce a novel regularization cost yielding input-to-state stability guarantees with respect to the prediction error for the resulting closed-loop system. The performance of the developed Koopman data-driven predictive control methodology is illustrated on a nonlinear benchmark example from the literature.
In recent years, there has been remarkable progress in the development of so-called certifiable perception methods, which leverage semidefinite, convex relaxations to find global optima of perception problems in robotics. However, many of these relaxations rely on simplifying assumptions that facilitate the problem formulation, such as an isotropic measurement noise distribution. In this paper, we explore the tightness of the semidefinite relaxations of matrix-weighted (anisotropic) state-estimation problems and reveal the limitations lurking therein: matrix-weighted factors can cause convex relaxations to lose tightness. In particular, we show that the semidefinite relaxations of localization problems with matrix weights may be tight only for low noise levels. To better understand this issue, we introduce a theoretical connection between the posterior uncertainty of the state estimate and the dual variable of the convex relaxation. With this connection in mind, we empirically explore the factors that contribute to this loss of tightness and demonstrate that redundant constraints can be used to regain it. As a second technical contribution of this paper, we show that the state-of-the-art relaxation of scalar-weighted SLAM cannot be used when matrix weights are considered. We provide an alternate formulation and show that its SDP relaxation is not tight (even for very low noise levels) unless specific redundant constraints are used. We demonstrate the tightness of our formulations on both simulated and real-world data.
As modern systems become ever more connected with complex dynamic coupling relationships, the development of safe control methods for such networked systems becomes paramount. In this paper, we define a general networked model with coupled dynamics and local control and discuss the relationship of node-level safety definitions for individual agents with local neighborhood dynamics. We define a node-level barrier function (NBF), node-level control barrier function (NCBF), and collaborative node-level barrier function (cNCBF) and provide conditions under which sets defined by these functions will be forward invariant. We use collaborative node-level barrier functions to construct a novel distributed algorithm for the safe control of collaborating network agents and provide conditions under which the algorithm is guaranteed to converge to a viable set of safe control actions for all agents or a terminally infeasible state for at least one agent. We introduce the notion of non-compliance of network neighbors as a metric of robustness for collaborative safety for a given network state and chosen barrier function hyper-parameters. We illustrate these results on a networked susceptible-infected-susceptible (SIS) model.
In this paper, we present a linear and reversible programming language with inductives types and recursion. The semantics of the languages is based on pattern-matching; we show how ensuring syntactical exhaustivity and non-overlapping of clauses is enough to ensure reversibility. The language allows to represent any Primitive Recursive Function. We then give a Curry-Howard correspondence with the logic $\mu$MALL: linear logic extended with least fixed points allowing inductive statements. The critical part of our work is to show how primitive recursion yields circular proofs that satisfy $\mu$MALL validity criterion and how the language simulates the cut-elimination procedure of $\mu$MALL.
In this paper, we present some enhanced error estimates for augmented subspace methods with the nonconforming Crouzeix-Raviart (CR) element. Before the novel estimates, we derive the explicit error estimates for the case of single eigenpair and multiple eigenpairs based on our defined spectral projection operators, respectively. Then we first strictly prove that the CR element based augmented subspace method exhibits the second-order convergence rate between the two steps of the augmented subspace iteration, which coincides with the practical experimental results. The algebraic error estimates of second order for the augmented subspace method explicitly elucidate the dependence of the convergence rate of the algebraic error on the coarse space, which provides new insights into the performance of the augmented subspace method. Numerical experiments are finally supplied to verify these new estimate results and the efficiency of our algorithms.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.