Conformal inference is a statistical method used to construct prediction sets for point predictors, providing reliable uncertainty quantification with probability guarantees. This method utilizes historical labeled data to estimate the conformity or nonconformity between predictions and true labels. However, conducting conformal inference for hidden states under hidden Markov models (HMMs) presents a significant challenge, as the hidden state data is unavailable, resulting in the absence of a true label set to serve as a conformal calibration set. This paper proposes an adaptive conformal inference framework that leverages a particle filtering approach to address this issue. Rather than directly focusing on the unobservable hidden state, we innovatively use weighted particles as an approximation of the actual posterior distribution of the hidden state. Our goal is to produce prediction sets that encompass these particles to achieve a specific aggregate weight sum, referred to as the aggregated coverage level. The proposed framework can adapt online to the time-varying distribution of data and achieve the defined marginal aggregated coverage level in both one-step and multi-step inference over the long term. We verify the effectiveness of this approach through a real-time target localization simulation study.
Bipartite graphs are commonly used to model relationships between two distinct entities in real-world applications, such as user-product interactions, user-movie ratings and collaborations between authors and publications. A butterfly (a 2x2 bi-clique) is a critical substructure in bipartite graphs, playing a significant role in tasks like community detection, fraud detection, and link prediction. As more real-world data is presented in a streaming format, efficiently counting butterflies in streaming bipartite graphs has become increasingly important. However, most existing algorithms typically assume that duplicate edges are absent, which is hard to hold in real-world graph streams, as a result, they tend to sample edges that appear multiple times, leading to inaccurate results. The only algorithm designed to handle duplicate edges is FABLE, but it suffers from significant limitations, including high variance, substantial time complexity, and memory inefficiency due to its reliance on a priority queue. To overcome these limitations, we introduce DEABC (Duplicate-Edge-Aware Butterfly Counting), an innovative method that uses bucket-based priority sampling to accurately estimate the number of butterflies, accounting for duplicate edges. Compared to existing methods, DEABC significantly reduces memory usage by storing only the essential sampled edge data while maintaining high accuracy. We provide rigorous proofs of the unbiasedness and variance bounds for DEABC, ensuring they achieve high accuracy. We compare DEABC with state-of-the-art algorithms on real-world streaming bipartite graphs. The results show that our DEABC outperforms existing methods in memory efficiency and accuracy, while also achieving significantly higher throughput.
In causal inference, properly selecting the propensity score (PS) model is an important topic and has been widely investigated in observational studies. There is also a large literature focusing on the missing data problem. However, there are very few studies investigating the model selection issue for causal inference when the exposure is missing at random (MAR). In this paper, we discuss how to select both imputation and PS models, which can result in the smallest root mean squared error (RMSE) of the estimated causal effect in our simulation study. Then, we propose a new criterion, called ``rank score'' for evaluating the overall performance of both models. The simulation studies show that the full imputation plus the outcome-related PS models lead to the smallest RMSE and the rank score can help select the best models. An application study is conducted to quantify the causal effect of cardiovascular disease (CVD) on the mortality of COVID-19 patients.
Machine learning methods strive to acquire a robust model during the training process that can effectively generalize to test samples, even in the presence of distribution shifts. However, these methods often suffer from performance degradation due to unknown test distributions. Test-time adaptation (TTA), an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions. Recent progress in this paradigm has highlighted the significant benefits of using unlabeled data to train self-adapted models prior to inference. In this survey, we categorize TTA into several distinct groups based on the form of test data, namely, test-time domain adaptation, test-time batch adaptation, and online test-time adaptation. For each category, we provide a comprehensive taxonomy of advanced algorithms and discuss various learning scenarios. Furthermore, we analyze relevant applications of TTA and discuss open challenges and promising areas for future research. For a comprehensive list of TTA methods, kindly refer to \url{//github.com/tim-learn/awesome-test-time-adaptation}.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.
Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.