亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Currently, matrix decomposition is one of the most widely used collaborative filtering algorithms by using factor decomposition to effectively deal with large-scale rating matrix. It mainly uses the interaction records between users and items to predict ratings. Based on the characteristic attributes of items and users, this paper proposes a new UISVD++ model that fuses the type attributes of movies and the age attributes of users into SVD++ framework. By projecting the age attribute into the user's implicit space and the type attribute into the item's implicit space, the model enriches the side information of the users and items. At last, we conduct comparative experiments on two public data sets, Movielens-100K and Movielens-1M. Experiment results express that the prediction accuracy of this model is better than other baselines in the task of predicting scores. In addition, these results also show that UISVD++ can effectively alleviate the cold start situation.

相關內容

Tissue segmentation is a routine preprocessing step to reduce the computational cost of whole slide image (WSI) analysis by excluding background regions. Traditional image processing techniques are commonly used for tissue segmentation, but often require manual adjustments to parameter values for atypical cases, fail to exclude all slide and scanning artifacts from the background, and are unable to segment adipose tissue. Pen marking artifacts in particular can be a potential source of bias for subsequent analyses if not removed. In addition, several applications require the separation of individual cross-sections, which can be challenging due to tissue fragmentation and adjacent positioning. To address these problems, we develop a convolutional neural network for tissue and pen marking segmentation using a dataset of 200 H&E stained WSIs. For separating tissue cross-sections, we propose a novel post-processing method based on clustering predicted centroid locations of the cross-sections in a 2D histogram. On an independent test set, the model achieved a mean Dice score of 0.981$\pm$0.033 for tissue segmentation and a mean Dice score of 0.912$\pm$0.090 for pen marking segmentation. The mean absolute difference between the number of annotated and separated cross-sections was 0.075$\pm$0.350. Our results demonstrate that the proposed model can accurately segment H&E stained tissue cross-sections and pen markings in WSIs while being robust to many common slide and scanning artifacts. The model with trained model parameters and post-processing method are made publicly available as a Python package called SlideSegmenter.

Influential diagnosis is an integral part of data analysis, of which most existing methodological frameworks presume a deterministic submodel and are designed for low-dimensional data (i.e., the number of predictors p smaller than the sample size n). However, the stochastic selection of a submodel from high-dimensional data where p exceeds n has become ubiquitous. Thus, methods for identifying observations that could exert undue influence on the choice of a submodel can play an important role in this setting. To date, discussion of this topic has been limited, falling short in two domains: (i) constrained ability to detect multiple influential points, and (ii) applicability only in restrictive settings. After describing the problem, we characterize and formalize the concept of influential observations on variable selection. Then, we propose a generalized diagnostic measure, extended from an available metric accommodating different model selectors and multiple influential observations, the asymptotic distribution of which is subsequently establish large p, thus providing guidelines to ascertain influential observations. A high-dimensional clustering procedure is further incorporated into our proposed scheme to detect multiple influential points. Simulation is conducted to assess the performances of various diagnostic approaches. The proposed procedure further demonstrates its value in improving predictive power when analyzing thermal-stimulated pain based on fMRI data.

We propose a predictor-corrector adaptive method for the study of hyperbolic partial differential equations (PDEs) under uncertainty. Constructed around the framework of stochastic finite volume (SFV) methods, our approach circumvents sampling schemes or simulation ensembles while also preserving fundamental properties, in particular hyperbolicity of the resulting systems and conservation of the discrete solutions. Furthermore, we augment the existing SFV theory with a priori convergence results for statistical quantities, in particular push-forward densities, which we demonstrate through numerical experiments. By linking refinement indicators to regions of the physical and stochastic spaces, we drive anisotropic refinements of the discretizations, introducing new degrees of freedom (DoFs) where deemed profitable. To illustrate our proposed method, we consider a series of numerical examples for non-linear hyperbolic PDEs based on Burgers' and Euler's equations.

A basic question within the emerging field of mechanistic interpretability is the degree to which neural networks learn the same underlying mechanisms. In other words, are neural mechanisms universal across different models? In this work, we study the universality of individual neurons across GPT2 models trained from different initial random seeds, motivated by the hypothesis that universal neurons are likely to be interpretable. In particular, we compute pairwise correlations of neuron activations over 100 million tokens for every neuron pair across five different seeds and find that 1-5\% of neurons are universal, that is, pairs of neurons which consistently activate on the same inputs. We then study these universal neurons in detail, finding that they usually have clear interpretations and taxonomize them into a small number of neuron families. We conclude by studying patterns in neuron weights to establish several universal functional roles of neurons in simple circuits: deactivating attention heads, changing the entropy of the next token distribution, and predicting the next token to (not) be within a particular set.

We propose a new perspective on deep ReLU networks, namely as circuit counterparts of Lukasiewicz infinite-valued logic -- a many-valued (MV) generalization of Boolean logic. An algorithm for extracting formulae in MV logic from deep ReLU networks is presented. As the algorithm applies to networks with general, in particular also real-valued, weights, it can be used to extract logical formulae from deep ReLU networks trained on data.

When using ordinal patterns, which describe the ordinal structure within a data vector, the problem of ties appeared permanently. So far, model classes were used which do not allow for ties; randomization has been another attempt to overcome this problem. Often, time periods with constant values even have been counted as times of monotone increase. To overcome this, a new approach is proposed: it explicitly allows for ties and, hence, considers more patterns than before. Ties are no longer seen as nuisance, but to carry valuable information. Limit theorems in the new framework are provided, both, for a single time series and for the dependence between two time series. The methods are used on hydrological data sets. It is common to distinguish five flood classes (plus 'absence of flood'). Considering data vectors of these classes at a certain gauge in a river basin, one will usually encounter several ties. Co-monotonic behavior between the data sets of two gauges (increasing, constant, decreasing) can be detected by the method as well as spatial patterns. Thus, it helps to analyze the strength of dependence between different gauges in an intuitive way. This knowledge can be used to asses risk and to plan future construction projects.

Skull base surgery is a demanding field in which surgeons operate in and around the skull while avoiding critical anatomical structures including nerves and vasculature. While image-guided surgical navigation is the prevailing standard, limitation still exists requiring personalized planning and recognizing the irreplaceable role of a skilled surgeon. This paper presents a collaboratively controlled robotic system tailored for assisted drilling in skull base surgery. Our central hypothesis posits that this collaborative system, enriched with haptic assistive modes to enforce virtual fixtures, holds the potential to significantly enhance surgical safety, streamline efficiency, and alleviate the physical demands on the surgeon. The paper describes the intricate system development work required to enable these virtual fixtures through haptic assistive modes. To validate our system's performance and effectiveness, we conducted initial feasibility experiments involving a medical student and two experienced surgeons. The experiment focused on drilling around critical structures following cortical mastoidectomy, utilizing dental stone phantom and cadaveric models. Our experimental results demonstrate that our proposed haptic feedback mechanism enhances the safety of drilling around critical structures compared to systems lacking haptic assistance. With the aid of our system, surgeons were able to safely skeletonize the critical structures without breaching any critical structure even under obstructed view of the surgical site.

Spectral precision matrix, the inverse of a spectral density matrix, is an object of central interest in frequency-domain analysis of multivariate time series. Estimation of spectral precision matrix is a key step in calculating partial coherency and graphical model selection of stationary time series. When the dimension of a multivariate time series is moderate to large, traditional estimators of spectral density matrices such as averaged periodograms tend to be severely ill-conditioned, and one needs to resort to suitable regularization strategies involving optimization over complex variables. In this work, we propose complex graphical Lasso (CGLASSO), an $\ell_1$-penalized estimator of spectral precision matrix based on local Whittle likelihood maximization. We develop fast $\textit{pathwise coordinate descent}$ algorithms for implementing CGLASSO on large dimensional time series data sets. At its core, our algorithmic development relies on a ring isomorphism between complex and real matrices that helps map a number of optimization problems over complex variables to similar optimization problems over real variables. This finding may be of independent interest and more broadly applicable for high-dimensional statistical analysis with complex-valued data. We also present a complete non-asymptotic theory of our proposed estimator which shows that consistent estimation is possible in high-dimensional regime as long as the underlying spectral precision matrix is suitably sparse. We compare the performance of CGLASSO with competing alternatives on simulated data sets, and use it to construct partial coherence network among brain regions from a real fMRI data set.

Many physical processes in science and engineering are naturally represented by operators between infinite-dimensional function spaces. The problem of operator learning, in this context, seeks to extract these physical processes from empirical data, which is challenging due to the infinite or high dimensionality of data. An integral component in addressing this challenge is model reduction, which reduces both the data dimensionality and problem size. In this paper, we utilize low-dimensional nonlinear structures in model reduction by investigating Auto-Encoder-based Neural Network (AENet). AENet first learns the latent variables of the input data and then learns the transformation from these latent variables to corresponding output data. Our numerical experiments validate the ability of AENet to accurately learn the solution operator of nonlinear partial differential equations. Furthermore, we establish a mathematical and statistical estimation theory that analyzes the generalization error of AENet. Our theoretical framework shows that the sample complexity of training AENet is intricately tied to the intrinsic dimension of the modeled process, while also demonstrating the remarkable resilience of AENet to noise.

This paper discusses the control of coherent structures in turbulent flows, which has broad applications among complex systems in science and technology. Mean field games have been proved a powerful tool and are proposed here to control the stochastic Lagrangian tracers as players tracking the flow field. We derive optimal control solutions for general nonlinear fluid systems using mean field game models, and develop computational algorithms to efficiently solve the resulting coupled forward and backward mean field system. A precise link is established for the control of Lagrangian tracers and the scalar vorticity field based on the functional Hamilton-Jacobi equations derived from the mean field models. New iterative numerical strategy is then constructed to compute the optimal solution with fast convergence. We verify the skill of the mean field control models and illustrate their practical efficiency on a prototype model modified from the viscous Burger's equation under various cost functions in both deterministic and stochastic formulations. The good model performance implies potential effectiveness of the strategy for more general high-dimensional turbulent systems.

北京阿比特科技有限公司