亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study the smallest non-zero eigenvalue of the sample covariance matrices $\mathcal{S}(Y)=YY^*$, where $Y=(y_{ij})$ is an $M\times N$ matrix with iid mean $0$ variance $N^{-1}$ entries. We prove a phase transition for its distribution, induced by the fatness of the tail of $y_{ij}$'s. More specifically, we assume that $y_{ij}$ is symmetrically distributed with tail probability $\mathbb{P}(|\sqrt{N}y_{ij}|\geq x)\sim x^{-\alpha}$ when $x\to \infty$, for some $\alpha\in (2,4)$. We show the following conclusions: (i). When $\alpha>\frac83$, the smallest eigenvalue follows the Tracy-Widom law on scale $N^{-\frac23}$; (ii). When $2<\alpha<\frac83$, the smallest eigenvalue follows the Gaussian law on scale $N^{-\frac{\alpha}{4}}$; (iii). When $\alpha=\frac83$, the distribution is given by an interpolation between Tracy-Widom and Gaussian; (iv). In case $\alpha\leq \frac{10}{3}$, in addition to the left edge of the MP law, a deterministic shift of order $N^{1-\frac{\alpha}{2}}$ shall be subtracted from the smallest eigenvalue, in both the Tracy-Widom law and the Gaussian law. Overall speaking, our proof strategy is inspired by \cite{ALY} which is originally done for the bulk regime of the L\'{e}vy Wigner matrices. In addition to various technical complications arising from the bulk-to-edge extension, two ingredients are needed for our derivation: an intermediate left edge local law based on a simple but effective matrix minor argument, and a mesoscopic CLT for the linear spectral statistic with asymptotic expansion for its expectation.

相關內容

We give a simple and computationally efficient algorithm that, for any constant $\varepsilon>0$, obtains $\varepsilon T$-swap regret within only $T = \mathsf{polylog}(n)$ rounds; this is an exponential improvement compared to the super-linear number of rounds required by the state-of-the-art algorithm, and resolves the main open problem of [Blum and Mansour 2007]. Our algorithm has an exponential dependence on $\varepsilon$, but we prove a new, matching lower bound. Our algorithm for swap regret implies faster convergence to $\varepsilon$-Correlated Equilibrium ($\varepsilon$-CE) in several regimes: For normal form two-player games with $n$ actions, it implies the first uncoupled dynamics that converges to the set of $\varepsilon$-CE in polylogarithmic rounds; a $\mathsf{polylog}(n)$-bit communication protocol for $\varepsilon$-CE in two-player games (resolving an open problem mentioned by [Babichenko-Rubinstein'2017, Goos-Rubinstein'2018, Ganor-CS'2018]); and an $\tilde{O}(n)$-query algorithm for $\varepsilon$-CE (resolving an open problem of [Babichenko'2020] and obtaining the first separation between $\varepsilon$-CE and $\varepsilon$-Nash equilibrium in the query complexity model). For extensive-form games, our algorithm implies a PTAS for $\mathit{normal}$ $\mathit{form}$ $\mathit{correlated}$ $\mathit{equilibria}$, a solution concept often conjectured to be computationally intractable (e.g. [Stengel-Forges'08, Fujii'23]).

For a graph $ G = (V, E) $ with vertex set $ V $ and edge set $ E $, a function $ f : V \rightarrow \{0, 1, 2, . . . , diam(G)\} $ is called a \emph{broadcast} on $ G $. For each vertex $ u \in V $, if there exists a vertex $ v $ in $ G $ (possibly, $ u = v $) such that $ f (v) > 0 $ and $ d(u, v) \leq f (v) $, then $ f $ is called a \textit{dominating broadcast} on $ G $. The \textit{cost} of the dominating broadcast $f$ is the quantity $ \sum_{v\in V}f(v) $. The minimum cost of a dominating broadcast is the \textit{broadcast domination number} of $G$, denoted by $ \gamma_{b}(G) $. A \textit{multipacking} is a set $ S \subseteq V $ in a graph $ G = (V, E) $ such that for every vertex $ v \in V $ and for every integer $ r \geq 1 $, the ball of radius $ r $ around $ v $ contains at most $ r $ vertices of $ S $, that is, there are at most $ r $ vertices in $ S $ at a distance at most $ r $ from $ v $ in $ G $. The \textit{multipacking number} of $ G $ is the maximum cardinality of a multipacking of $ G $ and is denoted by $ mp(G) $. We show that, for any cactus graph $G$, $\gamma_b(G)\leq \frac{3}{2}mp(G)+\frac{11}{2}$. We also show that $\gamma_b(G)-mp(G)$ can be arbitrarily large for cactus graphs by constructing an infinite family of cactus graphs such that the ratio $\gamma_b(G)/mp(G)=4/3$, with $mp(G)$ arbitrarily large. This result shows that, for cactus graphs, we cannot improve the bound $\gamma_b(G)\leq \frac{3}{2}mp(G)+\frac{11}{2}$ to a bound in the form $\gamma_b(G)\leq c_1\cdot mp(G)+c_2$, for any constant $c_1<4/3$ and $c_2$. Moreover, we provide an $O(n)$-time algorithm to construct a multipacking of $G$ of size at least $ \frac{2}{3}mp(G)-\frac{11}{3} $, where $n$ is the number of vertices of the graph $G$.

If $G$ is a graph, $A,B$ its induced subgraphs and $f\colon A\to B$ an isomorphism, we say that $f$ is a partial automorphism of $G$. In 1992, Hrushovski proved that graphs have the extension property for partial automorphisms (EPPA, also called the Hrushovski property), that is, for every finite graph $G$ there is a finite graph $H$, its EPPA-witness, such that $G$ is an induced subgraph of $H$ and every partial automorphism of $G$ extends to an automorphism of $H$. The EPPA number of a graph $G$, denoted by $\mathop{\mathrm{eppa}}\nolimits(G)$, is the smallest number of vertices of an EPPA-witness for $G$, and we put $\mathop{\mathrm{eppa}}\nolimits(n) = \max\{\mathop{\mathrm{eppa}}\nolimits(G) : \lvert G\rvert = n\}$. In this note we review the state of the area, improve some lower bounds (in particular, we show that $\mathop{\mathrm{eppa}}\nolimits(n)\geq \frac{2^n}{\sqrt{n}}$, thereby identifying the correct base of the exponential) and pose several open questions. We also briefly discuss EPPA numbers of hypergraphs and directed graphs.

The fractional differential equation $L^\beta u = f$ posed on a compact metric graph is considered, where $\beta>0$ and $L = \kappa^2 - \nabla(a\nabla)$ is a second-order elliptic operator equipped with certain vertex conditions and sufficiently smooth and positive coefficients $\kappa, a$. We demonstrate the existence of a unique solution for a general class of vertex conditions and derive the regularity of the solution in the specific case of Kirchhoff vertex conditions. These results are extended to the stochastic setting when $f$ is replaced by Gaussian white noise. For the deterministic and stochastic settings under generalized Kirchhoff vertex conditions, we propose a numerical solution based on a finite element approximation combined with a rational approximation of the fractional power $L^{-\beta}$. For the resulting approximation, the strong error is analyzed in the deterministic case, and the strong mean squared error as well as the $L_2(\Gamma\times \Gamma)$-error of the covariance function of the solution are analyzed in the stochastic setting. Explicit rates of convergences are derived for all cases. Numerical experiments for ${L = \kappa^2 - \Delta, \kappa>0}$ are performed to illustrate the results.

A $k$-deck of a (coloured) graph is a multiset of its induced $k$-vertex subgraphs. Given a graph $G$, when is it possible to reconstruct with high probability a uniformly random colouring of its vertices in $r$ colours from its $k$-deck? In this paper, we study this question for grids and random graphs. Reconstruction of random colourings of $d$-dimensional $n$-grids from the deck of their $k$-subgrids is one of the most studied colour reconstruction questions. The 1-dimensional case is motivated by the problem of reconstructing DNA sequences from their `shotgunned' stretches. It was comprehensively studied and the above reconstruction question was completely answered in the '90s. In this paper, we get a very precise answer for higher $d$. For every $d\geq 2$ and every $r\geq 2$, we present an almost linear algorithm that reconstructs with high probability a random $r$-colouring of vertices of a $d$-dimensional $n$-grid from the deck of all its $k$-subgrids for every $k\geq(d\log_r n)^{1/d}+1/d+\varepsilon$ and prove that the random $r$-colouring is not reconstructible with high probability if $k\leq (d\log_r n)^{1/d}-\varepsilon$. This answers the question of Narayanan and Yap (that was asked for $d\geq 3$) on "two-point concentration" of the minimum $k$ so that $k$-subgrids determine the entire colouring. Next, we prove that with high probability a uniformly random $r$-colouring of vertices of a uniformly random graph $G(n,1/2)$ is reconstructible from its full $k$-deck if $k\geq 2\log_2 n+8$ and is not reconstructible with high probability if $k\leq\sqrt{2\log_2 n}$. We further show that the colour reconstruction algorithm for random graphs can be modified and used for graph reconstruction: we prove that with high probability $G(n,1/2)$ is reconstructible from its full $k$-deck if $k\geq 2\log_2 n+11$ while it is not reconstructible with high probability if $k\leq 2\sqrt{\log_2 n}$.

We prove the method of power iteration for matrices with at most finite entries from the Levi-Civita field $\mathcal C$ under the assumption that there exists an eigenvalue with the strictly largest in absolute value complex part. In this case the weak convergence of a start vector to the eigenvector, that corresponds to the largest eigenvalue, is proven. Further, we prove that the Rayleigh quotient of the largest eigenvector also converges weakly to the corresponding eigenvalue. As a corollary, the same holds for matrices and polynomials over the Puiseux series field. In addition to that, we deliver an implementation of our method in Python.

It is known in \cite{beccari} that the standard explicit Euler-type scheme (such as the exponential Euler and the linear-implicit Euler schemes) with a uniform timestep, though computationally efficient, may diverge for the stochastic Allen--Cahn equation. To overcome the divergence, this paper proposes and analyzes adaptive time-stepping schemes, which adapt the timestep at each iteration to control numerical solutions from instability. The \textit{a priori} estimates in $\mathcal {C}(\mathcal {O})$-norm and $\dot{H}^{\beta}(\mathcal{O})$-norm of numerical solutions are established provided the adaptive timestep function is suitably bounded, which plays a key role in the convergence analysis. We show that the adaptive time-stepping schemes converge strongly with order $\frac{\beta}{2}$ in time and $\frac{\beta}{d}$ in space with $d$ ($d=1,2,3$) being the dimension and $\beta\in(0,2]$. Numerical experiments show that the adaptive time-stepping schemes are simple to implement and at a lower computational cost than a scheme with the uniform timestep.

This paper develops the notion of \emph{Word Linear Complexity} ($WLC$) of vector valued sequences over finite fields $\ff$ as an extension of Linear Complexity ($LC$) of sequences and their ensembles. This notion of complexity extends the concept of the minimal polynomial of an ensemble (vector valued) sequence to that of a matrix minimal polynomial and shows that the matrix minimal polynomial can be used with iteratively generated vector valued sequences by maps $F:\ff^n\rightarrow\ff^n$ at a given $y$ in $\ff^n$ for solving the unique local inverse $x$ of the equation $y=F(x)$ when the sequence is periodic. The idea of solving a local inverse of a map in finite fields when the iterative sequence is periodic and its application to various problems of Cryptanalysis is developed in previous papers \cite{sule322, sule521, sule722,suleCAM22} using the well known notion of $LC$ of sequences. $LC$ is the degree of the associated minimal polynomial of the sequence. The generalization of $LC$ to $WLC$ considers vector valued (or word oriented) sequences such that the word oriented recurrence relation is obtained by matrix vector multiplication instead of scalar multiplication as considered in the definition of $LC$. Hence the associated minimal polynomial is matrix valued whose degree is called $WLC$. A condition is derived when a nontrivial matrix polynomial associated with the word oriented recurrence relation exists when the sequence is periodic. It is shown that when the matrix minimal polynomial exists $n(WLC)=LC$. Finally it is shown that the local inversion problem is solved using the matrix minimal polynomial when such a polynomail exists hence leads to a word oriented approach to local inversion.

This work develops an energy-based discontinuous Galerkin (EDG) method for the nonlinear Schr\"odinger equation with the wave operator. The focus of the study is on the energy-conserving or energy-dissipating behavior of the method with some simple mesh-independent numerical fluxes we designed. We establish error estimates in the energy norm that require careful selection of a test function for the auxiliary equation involving the time derivative of the displacement variable. A critical part of the convergence analysis is to establish the L2 error bounds for the time derivative of the approximation error in the displacement variable by using the equation that determines its mean value. Using a specially chosen test function, we show that one can create a linear system for the time evolution of the unknowns even when dealing with nonlinear properties in the original problem. Extensive numerical experiments are provided to demonstrate the optimal convergence of the scheme in the L2 norm with our choices of the numerical flux.

It is widely known that the lower bound for the algorithmic complexity of square matrix multiplication resorts to at least $n^2$ arithmetic operations. The justification builds upon the following reasoning: given that there are $2 n^2$ numbers in the input matrices, any algorithm necessarily must operate on each at least once. In this paper, we show that this is not necessarily the case for certain instances of the problem, for instance matrices with natural number entries. We present an algorithm performing a single multiplication and $(n - 1)$ sums, therefore using n arithmetic operations. The ingenuity of the approach relies on encoding the original $2n^2$ elements as two numbers of much greater magnitude. Thus, though processing each of the inputs at least once, it relies on a lower count of arithmetic operations. In the computational model used to analyze this problem, such encoding operation is not available, thus it is not clear this work affects the currently accepted complexity results for matrix multiplication, but the new algorithm complexity (when taking into account the encodings) is $3n^2 + 2n - 1$ operations. In addition, given the exponential increase in multiplication operands magnitude, its practical usage is constrained to certain instances of the problem. Nonetheless, this work presents a novel mathematically inspired algorithm while pointing towards an alternative research path, which opens the possibility of novel algorithms and a taxonomy of matrix multiplications and associated complexities.

北京阿比特科技有限公司