亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pre-trained language models are effective in a variety of natural language tasks, but it has been argued their capabilities fall short of fully learning meaning or understanding language. To understand the extent to which language models can learn some form of meaning, we investigate their ability to capture semantics of code beyond superficial frequency and co-occurrence. In contrast to previous research on probing models for linguistic features, we study pre-trained models in a setting that allows for objective and straightforward evaluation of a model's ability to learn semantics. In this paper, we examine whether such models capture the semantics of code, which is precisely and formally defined. Through experiments involving the manipulation of code fragments, we show that code pre-trained models of code learn a robust representation of the computational semantics of code that goes beyond superficial features of form alone

相關內容

Language models that are sensitive to external context can more effectively capture the speaking patterns of individuals with specific characteristics or in particular environments. However, obtaining and leveraging such annotations can be challenging. In this work, we show how to leverage rich character and film annotations to personalise language models in a scalable manner. Our best model can reduce perplexity by up to 6.5% compared to a parameter-matched language model. Our approach performs on par with speaker-specific fine-tuning when the fine-tuning data (i.e. past dialogue) for individual speakers is available. On top of that, it also generalises well to a scenario with no such data, relying on combinations of demographic characteristics expressed via metadata. Our findings are consistent across two corpora, one of which is also a contribution of this paper: Cornell-rich contains rich manual annotations for 863 speaking characters from the Cornell Movie Dialog Corpus, including features such as characteristic quotes and character descriptions, along with six automatically extracted metadata features for over 95% of the featured films. Finally, we also present a cost-benefit analysis highlighting which annotations are most cost-effective in reducing perplexity.

Most NeRF-based models are designed for learning the entire scene, and complex scenes can lead to longer learning times and poorer rendering effects. This paper utilizes scene semantic priors to make improvements in fast training, allowing the network to focus on the specific targets and not be affected by complex backgrounds. The training speed can be increased by 7.78 times with better rendering effect, and small to medium sized targets can be rendered faster. In addition, this improvement applies to all NeRF-based models. Considering the inherent multi-view consistency and smoothness of NeRF, this paper also studies weak supervision by sparsely sampling negative ray samples. With this method, training can be further accelerated and rendering quality can be maintained. Finally, this paper extends pixel semantic and color rendering formulas and proposes a new scene editing technique that can achieve unique displays of the specific semantic targets or masking them in rendering. To address the problem of unsupervised regions incorrect inferences in the scene, we also designed a self-supervised loop that combines morphological operations and clustering.

Rare event simulation and rare event probability estimation are important tasks within the analysis of systems subject to uncertainty and randomness. Simultaneously, accurately estimating rare event probabilities is an inherently difficult task that calls for dedicated tools and methods. One way to improve estimation efficiency on difficult rare event estimation problems is to leverage gradients of the computational model representing the system in consideration, e.g., to explore the rare event faster and more reliably. We present a novel approach for estimating rare event probabilities using such model gradients by drawing on a technique to generate samples from non-normalized posterior distributions in Bayesian inference - the Stein variational gradient descent. We propagate samples generated from a tractable input distribution towards a near-optimal rare event importance sampling distribution by exploiting a similarity of the latter with Bayesian posterior distributions. Sample propagation takes the shape of passing samples through a sequence of invertible transforms such that their densities can be tracked and used to construct an unbiased importance sampling estimate of the rare event probability - the Stein variational rare event estimator. We discuss settings and parametric choices of the algorithm and suggest a method for balancing convergence speed with stability by choosing the step width or base learning rate adaptively. We analyze the method's performance on several analytical test functions and two engineering examples in low to high stochastic dimensions ($d = 2 - 869$) and find that it consistently outperforms other state-of-the-art gradient-based rare event simulation methods.

Typical black-box optimization approaches in robotics focus on learning from metric scores. However, that is not always possible, as not all developers have ground truth available. Learning appropriate robot behavior in human-centric contexts often requires querying users, who typically cannot provide precise metric scores. Existing approaches leverage human feedback in an attempt to model an implicit reward function; however, this reward may be difficult or impossible to effectively capture. In this work, we introduce SortCMA to optimize algorithm parameter configurations in high dimensions based on pairwise user preferences. SortCMA efficiently and robustly leverages user input to find parameter sets without directly modeling a reward. We apply this method to tuning a commercial depth sensor without ground truth, and to robot social navigation, which involves highly complex preferences over robot behavior. We show that our method succeeds in optimizing for the user's goals and perform a user study to evaluate social navigation results.

Recently, large language models (LLMs) fine-tuned to follow human instruction have exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC) tasks, particularly in non-English languages, remains significantly unexplored. In this paper, we delve into abilities of instruction fine-tuned LLMs in Arabic GEC, a task made complex due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to $65.49$ F\textsubscript{1} score under expert prompting (approximately $5$ points higher than our established baseline). This highlights the potential of LLMs in low-resource settings, offering a viable approach for generating useful synthetic data for model training. Despite these positive results, we find that instruction fine-tuned models, regardless of their size, significantly underperform compared to fully fine-tuned models of significantly smaller sizes. This disparity highlights a substantial room for improvements for LLMs. Inspired by methods from low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our work sets new SoTA for Arabic GEC, with $72.19\%$ and $73.26$ F$_{1}$ on the 2014 and 2015 QALB datasets, respectively.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司