亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Video Anomaly Detection (VAD) aims to localize abnormal events on the timeline of long-range surveillance videos. Anomaly-scoring-based methods have been prevailing for years but suffer from the high complexity of thresholding and low explanability of detection results. In this paper, we conduct pioneer research on equipping video-based large language models (VLLMs) in the framework of VAD, making the VAD model free from thresholds and able to explain the reasons for the detected anomalies. We introduce a novel network module Long-Term Context (LTC) to mitigate the incapability of VLLMs in long-range context modeling. We design a three-phase training method to improve the efficiency of fine-tuning VLLMs by substantially minimizing the requirements for VAD data and lowering the costs of annotating instruction-tuning data. Our trained model achieves the top performance on the anomaly videos of the UCF-Crime and TAD benchmarks, with the AUC improvements of +3.86\% and +4.96\%, respectively. More impressively, our approach can provide textual explanations for detected anomalies.

相關內容

The images captured by Wireless Capsule Endoscopy (WCE) always exhibit specular reflections, and removing highlights while preserving the color and texture in the region remains a challenge. To address this issue, this paper proposes a highlight removal method for capsule endoscopy images. Firstly, the confidence and feature terms of the highlight region's edges are computed, where confidence is obtained by the ratio of known pixels in the RGB space's R channel to the B channel within a window centered on the highlight region's edge pixel, and feature terms are acquired by multiplying the gradient vector of the highlight region's edge pixel with the iso-intensity line. Subsequently, the confidence and feature terms are assigned different weights and summed to obtain the priority of all highlight region's edge pixels, and the pixel with the highest priority is identified. Then, the variance of the highlight region's edge pixels is used to adjust the size of the sample block window, and the best-matching block is searched in the known region based on the RGB color similarity and distance between the sample block and the window centered on the pixel with the highest priority. Finally, the pixels in the best-matching block are copied to the highest priority highlight removal region to achieve the goal of removing the highlight region. Experimental results demonstrate that the proposed method effectively removes highlights from WCE images, with a lower coefficient of variation in the highlight removal region compared to the Crinimisi algorithm and DeepGin method. Additionally, the color and texture in the highlight removal region are similar to those in the surrounding areas, and the texture is continuous.

Temporal question answering (QA) involves time constraints, with phrases such as "... in 2019" or "... before COVID". In the former, time is an explicit condition, in the latter it is implicit. State-of-the-art methods have limitations along three dimensions. First, with neural inference, time constraints are merely soft-matched, giving room to invalid or inexplicable answers. Second, questions with implicit time are poorly supported. Third, answers come from a single source: either a knowledge base (KB) or a text corpus. We propose a temporal QA system that addresses these shortcomings. First, it enforces temporal constraints for faithful answering with tangible evidence. Second, it properly handles implicit questions. Third, it operates over heterogeneous sources, covering KB, text and web tables in a unified manner. The method has three stages: (i) understanding the question and its temporal conditions, (ii) retrieving evidence from all sources, and (iii) faithfully answering the question. As implicit questions are sparse in prior benchmarks, we introduce a principled method for generating diverse questions. Experiments show superior performance over a suite of baselines.

Human motion transfer (HMT) aims to generate a video clip for the target subject by imitating the source subject's motion. Although previous methods have achieved good results in synthesizing good-quality videos, they lose sight of individualized motion information from the source and target motions, which is significant for the realism of the motion in the generated video. To address this problem, we propose a novel identity-preserved HMT network, termed \textit{IDPres}. This network is a skeleton-based approach that uniquely incorporates the target's individualized motion and skeleton information to augment identity representations. This integration significantly enhances the realism of movements in the generated videos. Our method focuses on the fine-grained disentanglement and synthesis of motion. To improve the representation learning capability in latent space and facilitate the training of \textit{IDPres}, we introduce three training schemes. These schemes enable \textit{IDPres} to concurrently disentangle different representations and accurately control them, ensuring the synthesis of ideal motions. To evaluate the proportion of individualized motion information in the generated video, we are the first to introduce a new quantitative metric called Identity Score (\textit{ID-Score}), motivated by the success of gait recognition methods in capturing identity information. Moreover, we collect an identity-motion paired dataset, $Dancer101$, consisting of solo-dance videos of 101 subjects from the public domain, providing a benchmark to prompt the development of HMT methods. Extensive experiments demonstrate that the proposed \textit{IDPres} method surpasses existing state-of-the-art techniques in terms of reconstruction accuracy, realistic motion, and identity preservation.

Semantic image synthesis (SIS) aims to generate realistic images that match given semantic masks. Despite recent advances allowing high-quality results and precise spatial control, they require a massive semantic segmentation dataset for training the models. Instead, we propose to employ a pre-trained unconditional generator and rearrange its feature maps according to proxy masks. The proxy masks are prepared from the feature maps of random samples in the generator by simple clustering. The feature rearranger learns to rearrange original feature maps to match the shape of the proxy masks that are either from the original sample itself or from random samples. Then we introduce a semantic mapper that produces the proxy masks from various input conditions including semantic masks. Our method is versatile across various applications such as free-form spatial editing of real images, sketch-to-photo, and even scribble-to-photo. Experiments validate advantages of our method on a range of datasets: human faces, animal faces, and buildings.

Vision Transformers (ViTs) have achieved remarkable success in computer vision tasks. However, their potential in rotation-sensitive scenarios has not been fully explored, and this limitation may be inherently attributed to the lack of spatial invariance in the data-forwarding process. In this study, we present a novel approach, termed Spatial Transform Decoupling (STD), providing a simple-yet-effective solution for oriented object detection with ViTs. Built upon stacked ViT blocks, STD utilizes separate network branches to predict the position, size, and angle of bounding boxes, effectively harnessing the spatial transform potential of ViTs in a divide-and-conquer fashion. Moreover, by aggregating cascaded activation masks (CAMs) computed upon the regressed parameters, STD gradually enhances features within regions of interest (RoIs), which complements the self-attention mechanism. Without bells and whistles, STD achieves state-of-the-art performance on the benchmark datasets including DOTA-v1.0 (82.24% mAP) and HRSC2016 (98.55% mAP), which demonstrates the effectiveness of the proposed method. Source code is available at //github.com/yuhongtian17/Spatial-Transform-Decoupling.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.

Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.

北京阿比特科技有限公司