Conditional distribution is a fundamental quantity for describing the relationship between a response and a predictor. We propose a Wasserstein generative approach to learning a conditional distribution. The proposed approach uses a conditional generator to transform a known distribution to the target conditional distribution. The conditional generator is estimated by matching a joint distribution involving the conditional generator and the target joint distribution, using the Wasserstein distance as the discrepancy measure for these joint distributions. We establish non-asymptotic error bound of the conditional sampling distribution generated by the proposed method and show that it is able to mitigate the curse of dimensionality, assuming that the data distribution is supported on a lower-dimensional set. We conduct numerical experiments to validate proposed method and illustrate its applications to conditional sample generation, nonparametric conditional density estimation, prediction uncertainty quantification, bivariate response data, image reconstruction and image generation.
Existing methods for speaker age estimation usually treat it as a multi-class classification or a regression problem. However, precise age identification remains a challenge due to label ambiguity, \emph{i.e.}, utterances from adjacent age of the same person are often indistinguishable. To address this, we utilize the ambiguous information among the age labels, convert each age label into a discrete label distribution and leverage the label distribution learning (LDL) method to fit the data. For each audio data sample, our method produces a age distribution of its speaker, and on top of the distribution we also perform two other tasks: age prediction and age uncertainty minimization. Therefore, our method naturally combines the age classification and regression approaches, which enhances the robustness of our method. We conduct experiments on the public NIST SRE08-10 dataset and a real-world dataset, which exhibit that our method outperforms baseline methods by a relatively large margin, yielding a 10\% reduction in terms of mean absolute error (MAE) on a real-world dataset.
We develop a kernel projected Wasserstein distance for the two-sample test, an essential building block in statistics and machine learning: given two sets of samples, to determine whether they are from the same distribution. This method operates by finding the nonlinear mapping in the data space which maximizes the distance between projected distributions. In contrast to existing works about projected Wasserstein distance, the proposed method circumvents the curse of dimensionality more efficiently. We present practical algorithms for computing this distance function together with the non-asymptotic uncertainty quantification of empirical estimates. Numerical examples validate our theoretical results and demonstrate good performance of the proposed method.
Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks that would trigger misclassification of DNNs but may be imperceptible to human perception. Adversarial defense has been important ways to improve the robustness of DNNs. Existing attack methods often construct adversarial examples relying on some metrics like the $\ell_p$ distance to perturb samples. However, these metrics can be insufficient to conduct adversarial attacks due to their limited perturbations. In this paper, we propose a new internal Wasserstein distance (IWD) to capture the semantic similarity of two samples, and thus it helps to obtain larger perturbations than currently used metrics such as the $\ell_p$ distance We then apply the internal Wasserstein distance to perform adversarial attack and defense. In particular, we develop a novel attack method relying on IWD to calculate the similarities between an image and its adversarial examples. In this way, we can generate diverse and semantically similar adversarial examples that are more difficult to defend by existing defense methods. Moreover, we devise a new defense method relying on IWD to learn robust models against unseen adversarial examples. We provide both thorough theoretical and empirical evidence to support our methods.
Issued from Optimal Transport, the Wasserstein distance has gained importance in Machine Learning due to its appealing geometrical properties and the increasing availability of efficient approximations. In this work, we consider the problem of estimating the Wasserstein distance between two probability distributions when observations are polluted by outliers. To that end, we investigate how to leverage Medians of Means (MoM) estimators to robustify the estimation of Wasserstein distance. Exploiting the dual Kantorovitch formulation of Wasserstein distance, we introduce and discuss novel MoM-based robust estimators whose consistency is studied under a data contamination model and for which convergence rates are provided. These MoM estimators enable to make Wasserstein Generative Adversarial Network (WGAN) robust to outliers, as witnessed by an empirical study on two benchmarks CIFAR10 and Fashion MNIST. Eventually, we discuss how to combine MoM with the entropy-regularized approximation of the Wasserstein distance and propose a simple MoM-based re-weighting scheme that could be used in conjunction with the Sinkhorn algorithm.
Statistical inference from high-dimensional data with low-dimensional structures has recently attracted lots of attention. In machine learning, deep generative modeling approaches implicitly estimate distributions of complex objects by creating new samples from the underlying distribution, and have achieved great success in generating synthetic realistic-looking images and texts. A key step in these approaches is the extraction of latent features or representations (encoding) that can be used for accurately reconstructing the original data (decoding). In other words, low-dimensional manifold structure is implicitly assumed and utilized in the distribution modeling and estimation. To understand the benefit of low-dimensional manifold structure in generative modeling, we build a general minimax framework for distribution estimation on unknown submanifold under adversarial losses, with suitable smoothness assumptions on the target distribution and the manifold. The established minimax rate elucidates how various problem characteristics, including intrinsic dimensionality of the data and smoothness levels of the target distribution and the manifold, affect the fundamental limit of high-dimensional distribution estimation. To prove the minimax upper bound, we construct an estimator based on a mixture of locally fitted generative models, which is motivated by the partition of unity technique from differential geometry and is necessary to cover cases where the underlying data manifold does not admit a global parametrization. We also propose a data-driven adaptive estimator that is shown to simultaneously attain within a logarithmic factor of the optimal rate over a large collection of distribution classes.
Few-shot Learning aims to learn classifiers for new classes with only a few training examples per class. Existing meta-learning or metric-learning based few-shot learning approaches are limited in handling diverse domains with various number of labels. The meta-learning approaches train a meta learner to predict weights of homogeneous-structured task-specific networks, requiring a uniform number of classes across tasks. The metric-learning approaches learn one task-invariant metric for all the tasks, and they fail if the tasks diverge. We propose to deal with these limitations with meta metric learning. Our meta metric learning approach consists of task-specific learners, that exploit metric learning to handle flexible labels, and a meta learner, that discovers good parameters and gradient decent to specify the metrics in task-specific learners. Thus the proposed model is able to handle unbalanced classes as well as to generate task-specific metrics. We test our approach in the `$k$-shot $N$-way' few-shot learning setting used in previous work and new realistic few-shot setting with diverse multi-domain tasks and flexible label numbers. Experiments show that our approach attains superior performances in both settings.
There is a rising interest in studying the robustness of deep neural network classifiers against adversaries, with both advanced attack and defence techniques being actively developed. However, most recent work focuses on discriminative classifiers, which only model the conditional distribution of the labels given the inputs. In this paper we propose the deep Bayes classifier, which improves classical naive Bayes with conditional deep generative models. We further develop detection methods for adversarial examples, which reject inputs that have negative log-likelihood under the generative model exceeding a threshold pre-specified using training data. Experimental results suggest that deep Bayes classifiers are more robust than deep discriminative classifiers, and the proposed detection methods achieve high detection rates against many recently proposed attacks.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan
We propose the Wasserstein Auto-Encoder (WAE)---a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which leads to a different regularizer than the one used by the Variational Auto-Encoder (VAE). This regularizer encourages the encoded training distribution to match the prior. We compare our algorithm with several other techniques and show that it is a generalization of adversarial auto-encoders (AAE). Our experiments show that WAE shares many of the properties of VAEs (stable training, encoder-decoder architecture, nice latent manifold structure) while generating samples of better quality, as measured by the FID score.
Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabelled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabelled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularisation during training to shape the distribution of the encoded data in latent space. We suggest denoising adversarial autoencoders, which combine denoising and regularisation, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of adversarial autoencoders. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance, and can synthesise samples that are more consistent with the input data than those trained without a corruption process.