亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Named Entity Recognition (NER) is a key information extraction task with a long-standing tradition. While recent studies address and aim to correct annotation errors via re-labeling efforts, little is known about the sources of human label variation, such as text ambiguity, annotation error, or guideline divergence. This is especially the case for high-quality datasets and beyond English CoNLL03. This paper studies disagreements in expert-annotated named entity datasets for three languages: English, Danish, and Bavarian. We show that text ambiguity and artificial guideline changes are dominant factors for diverse annotations among high-quality revisions. We survey student annotations on a subset of difficult entities and substantiate the feasibility and necessity of manifold annotations for understanding named entity ambiguities from a distributional perspective.

相關內容

In recent years, Neural Radiance Fields (NeRFs) have demonstrated significant potential in encoding highly-detailed 3D geometry and environmental appearance, positioning themselves as a promising alternative to traditional explicit representation for 3D scene reconstruction. However, the predominant reliance on RGB imaging presupposes ideal lighting conditions: a premise frequently unmet in robotic applications plagued by poor lighting or visual obstructions. This limitation overlooks the capabilities of infrared (IR) cameras, which excel in low-light detection and present a robust alternative under such adverse scenarios. To tackle these issues, we introduce Thermal-NeRF, the first method that estimates a volumetric scene representation in the form of a NeRF solely from IR imaging. By leveraging a thermal mapping and structural thermal constraint derived from the thermal characteristics of IR imaging, our method showcasing unparalleled proficiency in recovering NeRFs in visually degraded scenes where RGB-based methods fall short. We conduct extensive experiments to demonstrate that Thermal-NeRF can achieve superior quality compared to existing methods. Furthermore, we contribute a dataset for IR-based NeRF applications, paving the way for future research in IR NeRF reconstruction.

Masked Autoencoders (MAEs) learn rich low-level representations from unlabeled data but require substantial labeled data to effectively adapt to downstream tasks. Conversely, Instance Discrimination (ID) emphasizes high-level semantics, offering a potential solution to alleviate annotation requirements in MAEs. Although combining these two approaches can address downstream tasks with limited labeled data, naively integrating ID into MAEs leads to extended training times and high computational costs. To address this challenge, we introduce uaMix-MAE, an efficient ID tuning strategy that leverages unsupervised audio mixtures. Utilizing contrastive tuning, uaMix-MAE aligns the representations of pretrained MAEs, thereby facilitating effective adaptation to task-specific semantics. To optimize the model with small amounts of unlabeled data, we propose an audio mixing technique that manipulates audio samples in both input and virtual label spaces. Experiments in low/few-shot settings demonstrate that \modelname achieves 4-6% accuracy improvements over various benchmarks when tuned with limited unlabeled data, such as AudioSet-20K. Code is available at //github.com/PLAN-Lab/uamix-MAE

Large language models (LLMs) have achieved remarkable performance in various evaluation benchmarks. However, concerns are raised about potential data contamination in their considerable volume of training corpus. Moreover, the static nature and fixed complexity of current benchmarks may inadequately gauge the advancing capabilities of LLMs. In this paper, we introduce DyVal, a general and flexible protocol for dynamic evaluation of LLMs. Based on our framework, we build graph-informed DyVal by leveraging the structural advantage of directed acyclic graphs to dynamically generate evaluation samples with controllable complexities. DyVal generates challenging evaluation sets on reasoning tasks including mathematics, logical reasoning, and algorithm problems. We evaluate various LLMs ranging from Flan-T5-large to GPT-3.5-Turbo and GPT-4. Experiments show that LLMs perform worse in DyVal-generated evaluation samples with different complexities, highlighting the significance of dynamic evaluation. We also analyze the failure cases and results of different prompting methods. Moreover, DyVal-generated samples are not only evaluation sets, but also helpful data for fine-tuning to improve the performance of LLMs on existing benchmarks. We hope that DyVal can shed light on future evaluation research of LLMs. Code is available at: //github.com/microsoft/promptbench.

We propose an objective intelligibility measure (OIM), called the Gammachirp Envelope Similarity Index (GESI), which can predict the speech intelligibility (SI) of simulated hearing loss (HL) sounds for normal hearing (NH) listeners. GESI is an intrusive method that computes the SI metric using the gammachirp filterbank (GCFB), the modulation filterbank, and the extended cosine similarity measure. The unique features of GESI are that i) it reflects the hearing impaired (HI) listener's HL that appears in the audiogram and is caused by active and passive cochlear dysfunction, ii) it provides a single goodness metric, as in the widely used STOI and ESTOI, that can be used immediately to evaluate SE algorithms, and iii) it provides a simple control parameter to accept the level asymmetry of the reference and test sounds and to deal with individual listening conditions and environments. We evaluated GESI and the conventional OIMs, STOI, ESTOI, MBSTOI, and HASPI versions 1 and 2 by using four SI experiments on words of male and female speech sounds in both laboratory and remote environments. GESI was shown to outperform the other OIMs in the evaluations. GESI could be used to improve SE algorithms in assistive listening devices for individual HI listeners.

Language models (LMs) have greatly propelled the research on natural language processing. However, LMs also raise concerns regarding the generation of biased or toxic content and the potential disclosure of private information from the training dataset. In this work, we present a new efficient approach, Ethos, that rectifies LMs to mitigate toxicity and bias in outputs and avoid privacy leakage. Ethos is built on task arithmetic. However, unlike current task arithmetic algorithms, Ethos distinguishes general beneficial and undesired knowledge when reconstructing task vectors. Specifically, Ethos first obtains a set of principal components from the pre-trained models using singular value decomposition. Then, by projecting the task vector onto principal components, Ethos identifies the principal components that encode general or undesired knowledge. Ethos performs negating using the task vector with undesired knowledge only, thereby minimizing collateral damage on general model utility. We demonstrate the efficacy of our approach on three different tasks: debiasing, detoxification, and memorization unlearning. Evaluations show Ethos is more effective in removing undesired knowledge and maintaining the overall model performance compared to current task arithmetic methods.

This study investigates the application of large language models, specifically GPT-4, to enhance programming education. The research outlines the design of a web application that uses GPT-4 to provide feedback on programming tasks, without giving away the solution. A web application for working on programming tasks was developed for the study and evaluated with 51 students over the course of one semester. The results show that most of the feedback generated by GPT-4 effectively addressed code errors. However, challenges with incorrect suggestions and hallucinated issues indicate the need for further improvements.

We present a parameter-efficient method for continual video question-answering (VidQA) learning. Our method, named DAM, uses the proposed Dynamic Adapter Merging to (i) mitigate catastrophic forgetting, (ii) enable efficient adaptation to continually arriving datasets, (iii) handle inputs from unknown datasets during inference, and (iv) enable knowledge sharing across similar dataset domains. Given a set of continually streaming VidQA datasets, we sequentially train dataset-specific adapters for each dataset while freezing the parameters of a large pretrained video-language backbone. During inference, given a video-question sample from an unknown domain, our method first uses the proposed non-parametric router function to compute a probability for each adapter, reflecting how relevant that adapter is to the current video-question input instance. Subsequently, the proposed dynamic adapter merging scheme aggregates all the adapter weights into a new adapter instance tailored for that particular test sample to compute the final VidQA prediction, mitigating the impact of inaccurate router predictions and facilitating knowledge sharing across domains. Our DAM model outperforms prior state-of-the-art continual learning approaches by 9.1% while exhibiting 1.9% less forgetting on 6 VidQA datasets spanning various domains. We further extend DAM to continual image classification and image QA and outperform prior methods by a large margin. The code is publicly available at: //github.com/klauscc/DAM

Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at //github.com/sail-sg/lm-random-memory-access.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司