亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper employs a localized orthogonal decomposition (LOD) method with $H^1$ interpolation for solving the multiscale elliptic problem. This method does not need any assumptions on scale separation. We give a priori error estimate for the proposed method. The theoretical results are conformed by various numerical experiments.

相關內容

Efficient algorithms for solving the Smallest Enclosing Sphere (SES) problem, such as Welzl's algorithm, often fail to handle degenerate subsets of points in 3D space. Degeneracies and ill-posed configurations present significant challenges, leading to failures in convergence, inaccuracies or increased computational cost in such cases. Existing improvements to these algorithms, while addressing some of these issues, are either computationally expensive or only partially effective. In this paper, we propose a hybrid algorithm designed to mitigate degeneracy while maintaining an overall computational complexity of $O(N)$. By combining robust preprocessing steps with efficient core computations, our approach avoids the pitfalls of degeneracy without sacrificing scalability. The proposed method is validated through theoretical analysis and experimental results, demonstrating its efficacy in addressing degenerate configurations and achieving high efficiency in practice.

Methods of computational quantum chemistry provide accurate approximations of molecular properties crucial for computer-aided drug discovery and other areas of chemical science. However, high computational complexity limits the scalability of their applications. Neural network potentials (NNPs) are a promising alternative to quantum chemistry methods, but they require large and diverse datasets for training. This work presents a new dataset and benchmark called $\nabla^2$DFT that is based on the nablaDFT. It contains twice as much molecular structures, three times more conformations, new data types and tasks, and state-of-the-art models. The dataset includes energies, forces, 17 molecular properties, Hamiltonian and overlap matrices, and a wavefunction object. All calculations were performed at the DFT level ($\omega$B97X-D/def2-SVP) for each conformation. Moreover, $\nabla^2$DFT is the first dataset that contains relaxation trajectories for a substantial number of drug-like molecules. We also introduce a novel benchmark for evaluating NNPs in molecular property prediction, Hamiltonian prediction, and conformational optimization tasks. Finally, we propose an extendable framework for training NNPs and implement 10 models within it.

We propose a $C^0$ interior penalty method for the fourth-order stream function formulation of the surface Stokes problem. The scheme utilizes continuous, piecewise polynomial spaces defined on an approximate surface. We show that the resulting discretization is positive definite and derive error estimates in various norms in terms of the polynomial degree of the finite element space as well as the polynomial degree to define the geometry approximation. A notable feature of the scheme is that it does not explicitly depend on the Gauss curvature of the surface. This is achieved via a novel integration-by-parts formula for the surface biharmonic operator.

Kernel methods map data into high-dimensional spaces, enabling linear algorithms to learn nonlinear functions without explicitly storing the feature vectors. Quantum kernel methods promise efficient learning by encoding feature maps into exponentially large Hilbert spaces inherent in quantum systems. In this work we implement quantum kernels on a 10-qubit star-topology register in a nuclear magnetic resonance (NMR) platform. We experimentally encode classical data in the evolution of multiple quantum coherence orders using data-dependent unitary transformations and then demonstrate one-dimensional regression and two-dimensional classification tasks. By extending the register to a double-layered star configuration, we propose an extended quantum kernel to handle non-parametrized operator inputs. By numerically simulating the extended quantum kernel, we show classification of entangling and nonentangling unitaries. These results confirm that quantum kernels exhibit strong capabilities in classical as well as quantum machine learning tasks.

We consider maximizing an unknown monotonic, submodular set function $f: 2^{[n]} \rightarrow [0,1]$ with cardinality constraint under stochastic bandit feedback. At each time $t=1,\dots,T$ the learner chooses a set $S_t \subset [n]$ with $|S_t| \leq k$ and receives reward $f(S_t) + \eta_t$ where $\eta_t$ is mean-zero sub-Gaussian noise. The objective is to minimize the learner's regret with respect to an approximation of the maximum $f(S_*)$ with $|S_*| = k$, obtained through robust greedy maximization of $f$. To date, the best regret bound in the literature scales as $k n^{1/3} T^{2/3}$. And by trivially treating every set as a unique arm one deduces that $\sqrt{ {n \choose k} T }$ is also achievable using standard multi-armed bandit algorithms. In this work, we establish the first minimax lower bound for this setting that scales like $\tilde{\Omega}(\min_{L \le k}(L^{1/3}n^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$. For a slightly restricted algorithm class, we prove a stronger regret lower bound of $\tilde{\Omega}(\min_{L \le k}(Ln^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$. Moreover, we propose an algorithm Sub-UCB that achieves regret $\tilde{\mathcal{O}}(\min_{L \le k}(Ln^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$ capable of matching the lower bound on regret for the restricted class up to logarithmic factors.

Temporal logics for the specification of information-flow properties are able to express relations between multiple executions of a system. The two most important such logics are HyperLTL and HyperCTL*, which generalise LTL and CTL* by trace quantification. It is known that this expressiveness comes at a price, i.e.\ satisfiability is undecidable for both logics. In this paper we settle the exact complexity of these problems, showing that both are in fact highly undecidable: we prove that HyperLTL satisfiability is $\Sigma_1^1$-complete and HyperCTL* satisfiability is $\Sigma_1^2$-complete. These are significant increases over the previously known lower bounds and the first upper bounds. To prove $\Sigma_1^2$-membership for HyperCTL*, we prove that every satisfiable HyperCTL* sentence has a model that is equinumerous to the continuum, the first upper bound of this kind. We also prove this bound to be tight. Furthermore, we prove that both countable and finitely-branching satisfiability for HyperCTL* are as hard as truth in second-order arithmetic, i.e.\ still highly undecidable. Finally, we show that the membership problem for every level of the HyperLTL quantifier alternation hierarchy is $\Pi_1^1$-complete.

We discuss a nondeterministic variant of the recently introduced machine model of deterministic auxiliary depth-$k$ storage automata (or aux-$k$-sda's) by Yamakami. It was proven that all languages recognized by polynomial-time logarithmic-space aux-$k$-sda's are located between $\mathrm{LOGDCFL}$ and $\mathrm{SC}^k$ (the $k$th level of Steve's class SC). We further propose a new and simple computational model of semi-unbounded fan-in Boolean circuits composed partly of cascading blocks, in which the first few AND gates of unbounded fan-out (called AND$_{(\omega)}$ gates) at each layer from the left (where all gates at each layer are indexed from left to right) are linked in a "cascading" manner to their right neighbors though specific AND and OR gates. We use this new circuit model to characterize a nondeterministic variant of the aux-$2k$-sda's (called aux-$2k$-sna's) that run in polynomial time using logarithmic work space. By relaxing the requirement for cascading circuits, we also demonstrate how such cascading circuit families characterize the complexity class $\mathrm{P}$. This yields an upper bound on the computational complexity of $\mathrm{LOG}k\mathrm{SNA}$ by $\mathrm{P}$.

We consider temporal numeric planning problems $\Pi$ expressed in PDDL2.1 level 3, and show how to produce SMT formulas $(i)$ whose models correspond to valid plans of $\Pi$, and $(ii)$ that extend the recently proposed planning with patterns approach from the numeric to the temporal case. We prove the correctness and completeness of the approach and show that it performs very well on 10 domains with required concurrency.

We consider the computational efficiency of Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods applied to partial differential equations with random coefficients. These arise, for example, in groundwater flow modelling, where a commonly used model for the unknown parameter is a random field. We make use of the circulant embedding procedure for sampling from the aforementioned coefficient. To improve the computational complexity of the MLMC estimator in the case of highly oscillatory random fields, we devise and implement a smoothing technique integrated into the circulant embedding method. This allows to choose the coarsest mesh on the first level of MLMC independently of the correlation length of the covariance function of the random field, leading to considerable savings in computational cost. We illustrate this with numerical experiments, where we see a saving of factor 5-10 in computational cost for accuracies of practical interest.

Maximal clique enumeration (MCE) is crucial for tasks like community detection and biological network analysis. Existing algorithms typically adopt the branch-and-bound framework with the vertex-oriented Bron-Kerbosch (BK) branching strategy, which forms the sub-branches by expanding the partial clique with a vertex. In this paper, we present a novel approach called HBBMC, a hybrid framework combining vertex-oriented BK branching and edge-oriented BK branching, where the latter adopts a branch-and-bound framework which forms the sub-branches by expanding the partial clique with an edge. This hybrid strategy enables more effective pruning and helps achieve a worst-case time complexity better than the best known one under a condition that holds for the majority of real-world graphs. To further enhance efficiency, we introduce an early termination technique, which leverages the topological information of the graphs and constructs the maximal cliques directly without branching. Our early termination technique is applicable to all branch-and-bound frameworks. Extensive experiments demonstrate the superior performance of our techniques.

北京阿比特科技有限公司