亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given a network, allocating resources at clusters level, rather than at each node, enhances efficiency in resource allocation and usage. In this paper, we study the problem of finding fully connected disjoint clusters to minimize the intra-cluster distances and maximize the number of nodes assigned to the clusters, while also ensuring that no two nodes within a cluster exceed a threshold distance. While the problem can easily be formulated using a binary linear model, traditional combinatorial optimization solvers struggle when dealing with large-scale instances. We propose an approach to solve this constrained clustering problem via reinforcement learning. Our method involves training an agent to generate both feasible and (near) optimal solutions. The agent learns problem-specific heuristics, tailored to the instances encountered in this task. In the results section, we show that our algorithm finds near optimal solutions, even for large scale instances.

相關內容

Hypercomplex neural networks are gaining increasing interest in the deep learning community. The attention directed towards hypercomplex models originates from several aspects, spanning from purely theoretical and mathematical characteristics to the practical advantage of lightweight models over conventional networks, and their unique properties to capture both global and local relations. In particular, a branch of these architectures, parameterized hypercomplex neural networks (PHNNs), has also gained popularity due to their versatility across a multitude of application domains. Nonetheless, only few attempts have been made to explain or interpret their intricacies. In this paper, we propose inherently interpretable PHNNs and quaternion-like networks, thus without the need for any post-hoc method. To achieve this, we define a type of cosine-similarity transform within the parameterized hypercomplex domain. This PHB-cos transform induces weight alignment with relevant input features and allows to reduce the model into a single linear transform, rendering it directly interpretable. In this work, we start to draw insights into how this unique branch of neural models operates. We observe that hypercomplex networks exhibit a tendency to concentrate on the shape around the main object of interest, in addition to the shape of the object itself. We provide a thorough analysis, studying single neurons of different layers and comparing them against how real-valued networks learn. The code of the paper is available at //github.com/ispamm/HxAI.

Neural Architecture Search (NAS) currently relies heavily on labeled data, which is both expensive and time-consuming to acquire. In this paper, we propose a novel NAS framework based on Masked Autoencoders (MAE) that eliminates the need for labeled data during the search process. By replacing the supervised learning objective with an image reconstruction task, our approach enables the robust discovery of network architectures without compromising performance and generalization ability. Additionally, we address the problem of performance collapse encountered in the widely-used Differentiable Architecture Search (DARTS) method in the unsupervised paradigm by introducing a multi-scale decoder. Through extensive experiments conducted on various search spaces and datasets, we demonstrate the effectiveness and robustness of the proposed method, providing empirical evidence of its superiority over baseline approaches.

Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of their successive outputs is highly correlated with the accuracy of the value to which they converge. Thus, we can use the convergence rate as a useful proxy for uncertainty. This results in an approach to uncertainty estimation that provides state-of-the-art estimates at a much lower computational cost than techniques like Ensembles, and without requiring any modifications to the original iterative model. We demonstrate its practical value by embedding it in two application domains: road detection in aerial images and the estimation of aerodynamic properties of 2D and 3D shapes.

Hybrid non-orthogonal multiple access (H-NOMA) has recently received significant attention as a general framework of multiple access, where both conventional orthogonal multiple access (OMA) and pure NOMA are its special cases. This paper focuses on the application of H-NOMA to ambient Internet of Things (IoT) with energy-constrained devices, where a new backscatter communication (BackCom) assisted H-NOMA uplink scheme is developed. Resource allocation for H-NOMA uplink transmission is also considered, where an overall power minimization problem is formulated. Insightful understandings for the key features of BackCom assisted H-NOMA and its difference from conventional H-NOMA are illustrated by developing analytical results for the two-user special case. For the general multi-user scenario, two algorithms, one based on the branch-bound (BB) principle and the other based on successive convex approximation (SCA), are developed to realize different tradeoffs between the system performance and complexity. The numerical results are also provided to verify the accuracy of the developed analytical results and demonstrate the performance gain of H-NOMA over OMA.

Spiking neural networks (SNNs) are receiving increased attention because they mimic synaptic connections in biological systems and produce spike trains, which can be approximated by binary values for computational efficiency. Recently, the addition of convolutional layers to combine the feature extraction power of convolutional networks with the computational efficiency of SNNs has been introduced. This paper studies the feasibility of using a convolutional spiking neural network (CSNN) to detect anticipatory slow cortical potentials (SCPs) related to braking intention in human participants using an electroencephalogram (EEG). Data was collected during an experiment wherein participants operated a remote-controlled vehicle on a testbed designed to simulate an urban environment. Participants were alerted to an incoming braking event via an audio countdown to elicit anticipatory potentials that were measured using an EEG. The CSNN's performance was compared to a standard CNN, EEGNet and three graph neural networks via 10-fold cross-validation. The CSNN outperformed all the other neural networks, and had a predictive accuracy of 99.06 percent with a true positive rate of 98.50 percent, a true negative rate of 99.20 percent and an F1-score of 0.98. Performance of the CSNN was comparable to the CNN in an ablation study using a subset of EEG channels that localized SCPs. Classification performance of the CSNN degraded only slightly when the floating-point EEG data were converted into spike trains via delta modulation to mimic synaptic connections.

We conduct the first comprehensive security study on representative port forwarding services (PFS), which emerge in recent years and make the web services deployed in internal networks available on the Internet along with better usability but less complexity compared to traditional techniques (e.g., NAT traversal techniques). Our study is made possible through a set of novel methodologies, which are designed to uncover the technical mechanisms of PFS, experiment attack scenarios for PFS protocols, automatically discover and snapshot port-forwarded websites (PFWs) at scale, and classify PFWs into well-observed categories. Leveraging these methodologies, we have observed the widespread adoption of PFS with millions of PFWs distributed across tens of thousands of ISPs worldwide. Furthermore, 32.31% PFWs have been classified into website categories that serve access to critical data or infrastructure, such as, web consoles for industrial control systems, IoT controllers, code repositories, and office automation systems. And 18.57% PFWs didn't enforce any access control for external visitors. Also identified are two types of attacks inherent in the protocols of Oray (one well-adopted PFS provider), and the notable abuse of PFSes by malicious actors in activities such as malware distribution, botnet operation and phishing.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

In many important graph data processing applications the acquired information includes both node features and observations of the graph topology. Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility and integrate them in a manner that is also universal. Here, universality refers to independence on homophily or heterophily graph assumptions. We address these issues by introducing a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights so as to jointly optimize node feature and topological information extraction, regardless of the extent to which the node labels are homophilic or heterophilic. Learned GPR weights automatically adjust to the node label pattern, irrelevant on the type of initialization, and thereby guarantee excellent learning performance for label patterns that are usually hard to handle. Furthermore, they allow one to avoid feature over-smoothing, a process which renders feature information nondiscriminative, without requiring the network to be shallow. Our accompanying theoretical analysis of the GPR-GNN method is facilitated by novel synthetic benchmark datasets generated by the so-called contextual stochastic block model. We also compare the performance of our GNN architecture with that of several state-of-the-art GNNs on the problem of node-classification, using well-known benchmark homophilic and heterophilic datasets. The results demonstrate that GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.

Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司