亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Resource allocation under uncertainty is a classical problem in city-scale cyber-physical systems. Consider emergency response as an example; urban planners and first responders optimize the location of ambulances to minimize expected response times to incidents such as road accidents. Typically, such problems deal with sequential decision-making under uncertainty and can be modeled as Markov (or semi-Markov) decision processes. The goal of the decision-maker is to learn a mapping from states to actions that can maximize expected rewards. While online, offline, and decentralized approaches have been proposed to tackle such problems, scalability remains a challenge for real-world use-cases. We present a general approach to hierarchical planning that leverages structure in city-level CPS problems for resource allocation. We use emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then use Monte-Carlo planning for solving the smaller problems and managing the interaction between them. Finally, we use data from Nashville, Tennessee, a major metropolitan area in the United States, to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Performer · state-of-the-art · MoDELS · 學成 ·
2022 年 2 月 24 日

We consider the problems of exploration and point-goal navigation in previously unseen environments, where the spatial complexity of indoor scenes and partial observability constitute these tasks challenging. We argue that learning occupancy priors over indoor maps provides significant advantages towards addressing these problems. To this end, we present a novel planning framework that first learns to generate occupancy maps beyond the field-of-view of the agent, and second leverages the model uncertainty over the generated areas to formulate path selection policies for each task of interest. For point-goal navigation the policy chooses paths with an upper confidence bound policy for efficient and traversable paths, while for exploration the policy maximizes model uncertainty over candidate paths. We perform experiments in the visually realistic environments of Matterport3D using the Habitat simulator and demonstrate: 1) Improved results on exploration and map quality metrics over competitive methods, and 2) The effectiveness of our planning module when paired with the state-of-the-art DD-PPO method for the point-goal navigation task.

Deploying reconfigurable intelligent surface (RIS) to enhance wireless transmission is a promising approach. In this paper, we investigate large-scale multi-RIS-assisted multi-cell systems, where multiple RISs are deployed in each cell. Different from the full-buffer scenario, the mutual interference in our system is not known a priori, and for this reason we apply the load coupling model to analyze this system. The objective is to minimize the total resource consumption subject to user demand requirement by optimizing the reflection coefficients in the cells. The cells are highly coupled and the overall problem is non-convex. To tackle this, we first investigate the single-cell case with given interference, and propose a low-complexity algorithm based on the Majorization-Minimization method to obtain a locally optimal solution. Then, we embed this algorithm into an algorithmic framework for the overall multi-cell problem, and prove its feasibility and convergence to a solution that is at least locally optimal. Simulation results demonstrate the benefit of RIS in time-frequency resource utilization in the multi-cell system.

Non-signalized intersections are one of the more complex, prone to accident scenarios faced in modern transportation networks. Cooperation among Connected Autonomous Vehicles (CAVs) is a promising approach to intersection control which provides increased safety, efficiency and fairness. We propose a novel hierarchical approach to navigating these dynamic, multi-lane, intersections. Our algorithm consists of a hierarchical formulation that first uses an auction mechanism to generate a priority order over all the agents, followed by an optimization-based trajectory planner that computes the optimal velocity commands that respects the priority order. The coupling of an auction mechanism for generating a vehicle entrance sequence and an optimization mechanism for trajectory planning, allows for real-time capable operation in high density multi-agent traffic, while providing formal guarantees in terms of fairness, safety, and efficiency. Our approach can operate at real-time speeds ($<10$ milliseconds), which is at least $40\times$ faster than prior methods. Tested on the SUMO simulator, our algorithm reduces congestion by at least $60\%$, time taken to reach the goal by $75\%$, and fuel consumption by $33\%$, compared to auction-based approaches and signaled approaches using traffic-lights and stop signs.

Most of the existing algorithms for fair division do not consider externalities. Under externalities, the utility an agent obtains depends not only on its allocation but also on the allocation of other agents. An agent has a positive (negative) value for the assigned goods (chores). This work focuses on a special case of externality, i.e., an agent receives positive or negative value for unassigned items independent of which other agent gets it. We show that it is possible to adapt existing algorithms using a transformation to ensure certain fairness and efficiency notions in this setting. Despite the positive results, fairness notions like proportionality need to be re-defined. Further, we prove that maximin share (MMS) may not have any multiplicative approximation in this setting. Studying this domain is a stepping stone towards full externalities where ensuring fairness is much more challenging.

The huge amount of data generated by the Internet of things (IoT) devices needs the computational power and storage capacity provided by cloud, edge, and fog computing paradigms. Each of these computing paradigms has its own pros and cons. Cloud computing provides enhanced data storage and computing power but causes high communication latency. Edge and fog computing provide similar services with lower latency but with limited capacity, capability, and coverage. A single computing paradigm cannot fulfil all the requirements of IoT devices and a federation between them is needed to extend their capacity, capability, and services. This federation is beneficial to both subscribers and providers and also reveals research issues in traffic offloading between clouds, edges, and fogs. Optimization has traditionally been used to solve the problem of traffic offloading. However, in such a complex federated system, traditional optimization cannot keep up with the strict latency requirements of decision making, ranging from milliseconds to sub-seconds. Machine learning approaches, especially reinforcement learning, are consequently becoming popular because they can quickly solve offloading problems in dynamic environments with large amounts of unknown information. This study provides a novel federal classification between cloud, edge, and fog and presents a comprehensive research roadmap on offloading for different federated scenarios. We survey the relevant literature on the various optimization approaches used to solve this offloading problem, and compare their salient features. We then provide a comprehensive survey on offloading in federated systems with machine learning approaches and the lessons learned as a result of these surveys. Finally, we outline several directions for future research and challenges that have to be faced in order to achieve such a federation.

Blockchain-based federated learning (BCFL) has recently gained tremendous attention because of its advantages such as decentralization and privacy protection of raw data. However, there has been few research focusing on the allocation of resources for clients in BCFL. In the BCFL framework where the FL clients and the blockchain miners are the same devices, clients broadcast the trained model updates to the blockchain network and then perform mining to generate new blocks. Since each client has a limited amount of computing resources, the problem of allocating computing resources into training and mining needs to be carefully addressed. In this paper, we design an incentive mechanism to assign each client appropriate rewards for training and mining, and then the client will determine the amount of computing power to allocate for each subtask based on these rewards using the two-stage Stackelberg game. After analyzing the utilities of the model owner (MO) (i.e., the BCFL task publisher) and clients, we transform the game model into two optimization problems, which are sequentially solved to derive the optimal strategies for both the MO and clients. Further, considering the fact that local training related information of each client may not be known by others, we extend the game model with analytical solutions to the incomplete information scenario. Extensive experimental results demonstrate the validity of our proposed schemes.

Contextual multi-armed bandit (MAB) achieves cutting-edge performance on a variety of problems. When it comes to real-world scenarios such as recommendation system and online advertising, however, it is essential to consider the resource consumption of exploration. In practice, there is typically non-zero cost associated with executing a recommendation (arm) in the environment, and hence, the policy should be learned with a fixed exploration cost constraint. It is challenging to learn a global optimal policy directly, since it is a NP-hard problem and significantly complicates the exploration and exploitation trade-off of bandit algorithms. Existing approaches focus on solving the problems by adopting the greedy policy which estimates the expected rewards and costs and uses a greedy selection based on each arm's expected reward/cost ratio using historical observation until the exploration resource is exhausted. However, existing methods are hard to extend to infinite time horizon, since the learning process will be terminated when there is no more resource. In this paper, we propose a hierarchical adaptive contextual bandit method (HATCH) to conduct the policy learning of contextual bandits with a budget constraint. HATCH adopts an adaptive method to allocate the exploration resource based on the remaining resource/time and the estimation of reward distribution among different user contexts. In addition, we utilize full of contextual feature information to find the best personalized recommendation. Finally, in order to prove the theoretical guarantee, we present a regret bound analysis and prove that HATCH achieves a regret bound as low as $O(\sqrt{T})$. The experimental results demonstrate the effectiveness and efficiency of the proposed method on both synthetic data sets and the real-world applications.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

Meta learning is a promising solution to few-shot learning problems. However, existing meta learning methods are restricted to the scenarios where training and application tasks share the same out-put structure. To obtain a meta model applicable to the tasks with new structures, it is required to collect new training data and repeat the time-consuming meta training procedure. This makes them inefficient or even inapplicable in learning to solve heterogeneous few-shot learning tasks. We thus develop a novel and principled HierarchicalMeta Learning (HML) method. Different from existing methods that only focus on optimizing the adaptability of a meta model to similar tasks, HML also explicitly optimizes its generalizability across heterogeneous tasks. To this end, HML first factorizes a set of similar training tasks into heterogeneous ones and trains the meta model over them at two levels to maximize adaptation and generalization performance respectively. The resultant model can then directly generalize to new tasks. Extensive experiments on few-shot classification and regression problems clearly demonstrate the superiority of HML over fine-tuning and state-of-the-art meta learning approaches in terms of generalization across heterogeneous tasks.

Deep hierarchical reinforcement learning has gained a lot of attention in recent years due to its ability to produce state-of-the-art results in challenging environments where non-hierarchical frameworks fail to learn useful policies. However, as problem domains become more complex, deep hierarchical reinforcement learning can become inefficient, leading to longer convergence times and poor performance. We introduce the Deep Nested Agent framework, which is a variant of deep hierarchical reinforcement learning where information from the main agent is propagated to the low level $nested$ agent by incorporating this information into the nested agent's state. We demonstrate the effectiveness and performance of the Deep Nested Agent framework by applying it to three scenarios in Minecraft with comparisons to a deep non-hierarchical single agent framework, as well as, a deep hierarchical framework.

北京阿比特科技有限公司