亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In many consumer virtual reality (VR) applications, users embody predefined characters that offer minimal customization options, frequently emphasizing storytelling over user choice. We explore whether matching a user's physical characteristics, specifically ethnicity and gender, with their virtual self-avatar affects their sense of embodiment in VR. We conducted a 2 x 2 within-subjects experiment (n=32) with a diverse user population to explore the impact of matching or not matching a user's self-avatar to their ethnicity and gender on their sense of embodiment. Our results indicate that matching the ethnicity of the user and their self-avatar significantly enhances sense of embodiment regardless of gender, extending across various aspects, including appearance, response, and ownership. We also found that matching gender significantly enhanced ownership, suggesting that this aspect is influenced by matching both ethnicity and gender. Interestingly, we found that matching ethnicity specifically affects self-location while matching gender specifically affects one's body ownership.

相關內容

 虛擬現實,或虛擬實境(Virtual Reality),簡稱 VR 技術,是指利用電腦模擬產生一個三度空間的虛擬世界,提供使用者關于視覺、聽覺、觸覺等感官的模擬,讓使用者如同身歷其境一般,可以及時、沒有限制地觀察三度空間內的事物。 實際上現在實用的民用VR技術只有帶頭部追蹤功能的頭戴式顯示器,只能有限的勉強模擬視覺感官。近年來火爆的VR就是這個。 VR技術重點在硬件方面,尤其是頭部追蹤技術是重中之重。VR必須要結合硬件與軟件一起使用。和大多數人想象的不同,VR在軟件方面實現起來簡單,幾乎只需要很少的一點代碼即可實現。

The simplex projection expands the capabilities of simplex plots (also known as ternary plots) to achieve a lossless visualization of 4D compositional data on a 2D canvas. Previously, this was only possible for 3D compositional data. We demonstrate how our approach can be applied to individual data points, point clouds, and continuous probability density functions on simplices. While we showcase our visualization technique specifically for 4D compositional data, we offer rigorous proofs that support its extension to compositional data of any (finite) dimensionality.

To improve privacy and ensure quality-of-service (QoS), deep learning (DL) models are increasingly deployed on Internet of Things (IoT) devices for data processing, significantly increasing the carbon footprint associated with DL on IoT, covering both operational and embodied aspects. Existing operational energy predictors often overlook quantized DL models and emerging neural processing units (NPUs), while embodied carbon footprint modeling tools neglect non-computing hardware components common in IoT devices, creating a gap in accurate carbon footprint modeling tools for IoT-enabled DL. This paper introduces \textit{\carb}, an end-to-end modeling tool for precise carbon footprint estimation in IoT-enabled DL, demonstrating a maximum $\pm21\%$ deviation in carbon footprint values compared to actual measurements across various DL models. Additionally, practical applications of \carb are showcased through multiple user case studies.

This article explores the dynamic influence of computational entities based on multi-agent systems theory (SMA) combined with large language models (LLM), which are characterized by their ability to simulate complex human interactions, as a possibility to revolutionize human user interaction from the use of specialized artificial agents to support everything from operational organizational processes to strategic decision making based on applied knowledge and human orchestration. Previous investigations reveal that there are limitations, particularly in the autonomous approach of artificial agents, especially when dealing with new challenges and pragmatic tasks such as inducing logical reasoning and problem solving. It is also considered that traditional techniques, such as the stimulation of chains of thoughts, require explicit human guidance. In our approach we employ agents developed from large language models (LLM), each with distinct prototyping that considers behavioral elements, driven by strategies that stimulate the generation of knowledge based on the use case proposed in the scenario (role-play) business, using a discussion approach between agents (guided conversation). We demonstrate the potential of developing agents useful for organizational strategies, based on multi-agent system theories (SMA) and innovative uses based on large language models (LLM based), offering a differentiated and adaptable experiment to different applications, complexities, domains, and capabilities from LLM.

Text-to-image (TTI) models offer many innovative services but also raise ethical concerns due to their potential to generate unethical images. Most public TTI services employ safety filters to prevent unintended images. In this work, we introduce the Divide-and-Conquer Attack to circumvent the safety filters of state-of the-art TTI models, including DALL-E 3 and Midjourney. Our attack leverages LLMs as text transformation agents to create adversarial prompts. We design attack helper prompts that effectively guide LLMs to break down an unethical drawing intent into multiple benign descriptions of individual image elements, allowing them to bypass safety filters while still generating unethical images. Because the latent harmful meaning only becomes apparent when all individual elements are drawn together. Our evaluation demonstrates that our attack successfully circumvents multiple strong closed-box safety filters. The comprehensive success rate of DACA bypassing the safety filters of the state-of-the-art TTI engine DALL-E 3 is above 85%, while the success rate for bypassing Midjourney V6 exceeds 75%. Our findings have more severe security implications than methods of manual crafting or iterative TTI model querying due to lower attack barrier, enhanced interpretability , and better adaptation to defense. Our prototype is available at: //github.com/researchcode001/Divide-and-Conquer-Attack

Identifying scientific publications that are within a dynamic field of research often requires costly annotation by subject-matter experts. Resources like widely-accepted classification criteria or field taxonomies are unavailable for a domain like artificial intelligence (AI), which spans emerging topics and technologies. We address these challenges by inferring a functional definition of AI research from existing expert labels, and then evaluating state-of-the-art chatbot models on the task of expert data annotation. Using the arXiv publication database as ground-truth, we experiment with prompt engineering for GPT chatbot models to identify an alternative, automated expert annotation pipeline that assigns AI labels with 94% accuracy. For comparison, we fine-tune SPECTER, a transformer language model pre-trained on scientific publications, that achieves 96% accuracy (only 2% higher than GPT) on classifying AI publications. Our results indicate that with effective prompt engineering, chatbots can be used as reliable data annotators even where subject-area expertise is required. To evaluate the utility of chatbot-annotated datasets on downstream classification tasks, we train a new classifier on GPT-labeled data and compare its performance to the arXiv-trained model. The classifier trained on GPT-labeled data outperforms the arXiv-trained model by nine percentage points, achieving 82% accuracy.

A popular framework for enforcing safe actions in Reinforcement Learning (RL) is Constrained RL, where trajectory based constraints on expected cost (or other cost measures) are employed to enforce safety and more importantly these constraints are enforced while maximizing expected reward. Most recent approaches for solving Constrained RL convert the trajectory based cost constraint into a surrogate problem that can be solved using minor modifications to RL methods. A key drawback with such approaches is an over or underestimation of the cost constraint at each state. Therefore, we provide an approach that does not modify the trajectory based cost constraint and instead imitates ``good'' trajectories and avoids ``bad'' trajectories generated from incrementally improving policies. We employ an oracle that utilizes a reward threshold (which is varied with learning) and the overall cost constraint to label trajectories as ``good'' or ``bad''. A key advantage of our approach is that we are able to work from any starting policy or set of trajectories and improve on it. In an exhaustive set of experiments, we demonstrate that our approach is able to outperform top benchmark approaches for solving Constrained RL problems, with respect to expected cost, CVaR cost, or even unknown cost constraints.

Recently, sign-aware graph recommendation has drawn much attention as it will learn users' negative preferences besides positive ones from both positive and negative interactions (i.e., links in a graph) with items. To accommodate the different semantics of negative and positive links, existing works utilize two independent encoders to model users' positive and negative preferences, respectively. However, these approaches cannot learn the negative preferences from high-order heterogeneous interactions between users and items formed by multiple links with different signs, resulting in inaccurate and incomplete negative user preferences. To cope with these intractable issues, we propose a novel \textbf{L}ight \textbf{S}igned \textbf{G}raph Convolution Network specifically for \textbf{Rec}ommendation (\textbf{LSGRec}), which adopts a unified modeling approach to simultaneously model high-order users' positive and negative preferences on a signed user-item interaction graph. Specifically, for the negative preferences within high-order heterogeneous interactions, first-order negative preferences are captured by the negative links, while high-order negative preferences are propagated along positive edges. Then, recommendation results are generated based on positive preferences and optimized with negative ones. Finally, we train representations of users and items through different auxiliary tasks. Extensive experiments on three real-world datasets demonstrate that our method outperforms existing baselines regarding performance and computational efficiency. Our code is available at \url{//anonymous.4open.science/r/LSGRec-BB95}.

The presence of toxic and gender-identity derogatory language in open-source software (OSS) communities has recently become a focal point for researchers. Such comments not only lead to frustration and disengagement among developers but may also influence their leave from the OSS projects. Despite ample evidence suggesting that diverse teams enhance productivity, the existence of toxic or gender identity discriminatory communications poses a significant threat to the participation of individuals from marginalized groups and, as such, may act as a barrier to fostering diversity and inclusion in OSS projects. However, there is a notable lack of research dedicated to exploring the association between gender-based toxic and derogatory language with a perceptible diversity of open-source software teams. Consequently, this study aims to investigate how such content influences the gender, ethnicity, and tenure diversity of open-source software development teams. To achieve this, we extract data from active GitHub projects, assess various project characteristics, and identify instances of toxic and gender-discriminatory language within issue/pull request comments. Using these attributes, we construct a regression model to explore how they associate with the perceptible diversity of those projects.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司