亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blood flow, dam or ship construction and numerous other problems in biomedical and general engineering involve incompressible flows interacting with elastic structures. Such interactions heavily influence the deformation and stress states which, in turn, affect the engineering design process. Therefore, any reliable model of such physical processes must consider the coupling of fluids and solids. However, complexity increases for non-Newtonian fluid models, as used, e.g., for blood or polymer flows. In these fluids, subtle differences in the local shear rate can have a drastic impact on the flow and hence on the coupled problem. There, existing (semi-)implicit solution strategies based on split-step or projection schemes for Newtonian fluids are not applicable, while extensions to non-Newtonian fluids can lead to substantial numerical overhead depending on the chosen fluid solver. To address these shortcomings, we present here a higher-order accurate, added-mass-stable fluid-structure interaction scheme centered around a split-step fluid solver. We compare several implicit and semi-implicit variants of the algorithm and verify convergence in space and time. Numerical examples show good performance in both benchmarks and an idealised setting of blood flow through an abdominal aortic aneurysm considering physiological parameters.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 數據分析 · 奇異的 · · 邊緣化 ·
2022 年 2 月 19 日

Motivated by applications to topological data analysis, we give an efficient algorithm for computing a (minimal) presentation of a bigraded $K[x,y]$-module $M$, where $K$ is a field. The algorithm takes as input a short chain complex of free modules $X\xrightarrow{f} Y \xrightarrow{g} Z$ such that $M\cong \ker{g}/\mathrm{im}{f}$. It runs in time $O(|X|^3+|Y|^3+|Z|^3)$ and requires $O(|X|^2+|Y|^2+|Z|^2)$ memory, where $|\cdot |$ denotes the rank. Given the presentation computed by our algorithm, the bigraded Betti numbers of $M$ are readily computed. Our approach is based on a simple matrix reduction algorithm, slight variants of which compute kernels of morphisms between free modules, minimal generating sets, and Gr\"obner bases. Our algorithm for computing minimal presentations has been implemented in RIVET, a software tool for the visualization and analysis of two-parameter persistent homology. In experiments on topological data analysis problems, our implementation outperforms the standard computational commutative algebra packages Singular and Macaulay2 by a wide margin.

In many applications, we have access to the complete dataset but are only interested in the prediction of a particular region of predictor variables. A standard approach is to find the globally best modeling method from a set of candidate methods. However, it is perhaps rare in reality that one candidate method is uniformly better than the others. A natural approach for this scenario is to apply a weighted $L_2$ loss in performance assessment to reflect the region-specific interest. We propose a targeted cross-validation (TCV) to select models or procedures based on a general weighted $L_2$ loss. We show that the TCV is consistent in selecting the best performing candidate under the weighted $L_2$ loss. Experimental studies are used to demonstrate the use of TCV and its potential advantage over the global CV or the approach of using only local data for modeling a local region. Previous investigations on CV have relied on the condition that when the sample size is large enough, the ranking of two candidates stays the same. However, in many applications with the setup of changing data-generating processes or highly adaptive modeling methods, the relative performance of the methods is not static as the sample size varies. Even with a fixed data-generating process, it is possible that the ranking of two methods switches infinitely many times. In this work, we broaden the concept of the selection consistency by allowing the best candidate to switch as the sample size varies, and then establish the consistency of the TCV. This flexible framework can be applied to high-dimensional and complex machine learning scenarios where the relative performances of modeling procedures are dynamic.

This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal H\"older continuity of the spatial semi-discrete numerical solution.

T. Borrvall and J. Petersson [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107] developed the first model for topology optimization of fluids in Stokes flow. They proved the existence of minimizers in the infinite-dimensional setting and showed that a suitably chosen finite element method will converge in a weak(-*) sense to an unspecified solution. In this work, we prove novel regularity results and extend their numerical analysis. In particular, given an isolated local minimizer to the infinite-dimensional problem, we show that there exists a sequence of finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to it. We also provide the first numerical investigation into convergence rates.

This paper proposes a generalised propulsion energy consumption model (PECM) for rotary-wing ummanned aerial vehicles (UAVs) under the consideration of the practical thrust-to-weight ratio (TWR) with respect to the velocity, acceleration and direction change of the UAVs. To verify the effectiveness of the proposed PECM, we consider a UAV-enabled communication system, where a rotary-wing UAV serves multiple ground users as an aerial base station. We aim to maximize the energy efficiency (EE) of the UAV by jointly optimizing the user scheduling and UAV trajectory variables. However, the formulated problem is a non-convex fractional integer programming problem, which is challenging to obtain its optimal solution. To tackle this, we propose an efficient iterative algorithm by decomposing the original problem into two sub-problems to obtain a suboptimal solution based on the successive convex approximation technique. Simulation results show that the optimized UAV trajectory by applying the proposed PECM are smoother and the corresponding EE has significant improvement as compared to other benchmark schemes.

This work addresses model order reduction for complex moving fronts, which are transported by advection or through a reaction-diffusion process. Such systems are especially challenging for model order reduction since the transport cannot be captured by linear reduction methods. Moreover, topological changes, such as splitting or merging of fronts pose difficulties for many nonlinear reduction methods and the small non-vanishing support of the underlying partial differential equations dynamics makes most nonlinear hyper-reduction methods infeasible. We propose a new decomposition method together with a hyper-reduction scheme that addresses these shortcomings. The decomposition uses a level-set function to parameterize the transport and a nonlinear activation function that captures the structure of the front. This approach is similar to autoencoder artificial neural networks, but additionally provides insights into the system, which can be used for efficient reduced order models. We make use of this property and are thus able to solve the advection equation with the same complexity as the POD-Galerkin approach while obtaining errors of less than one percent for representative examples. Furthermore, we outline a special hyper-reduction method for more complicated advection-reaction-diffusion systems. The capability of the approach is illustrated by various numerical examples in one and two spatial dimensions, including real-life applications to a two-dimensional Bunsen flame.

We present two strategies for designing passivity preserving higher order discretization methods for Maxwell's equations in nonlinear Kerr-type media. Both approaches are based on variational approximation schemes in space and time. This allows to rigorously prove energy conservation or dissipation, and thus passivity, on the fully discrete level. For linear media, the proposed methods coincide with certain combinations of mixed finite element and implicit Runge-Kutta schemes. The order optimal convergence rates, which can thus be expected for linear problems, are also observed for nonlinear problems in the numerical tests.

A noteworthy aspect in blood flow modeling is the definition of the mechanical interaction between the fluid flow and the biological structure that contains it, namely the vessel wall. It has been demonstrated that the addition of a viscous contribution to the mechanical characterization of vessels brings positive results when compared to in-vivo measurements. In this context, the numerical implementation of boundary conditions able to keep memory of the viscoelastic contribution of vessel walls assumes an important role, especially when dealing with large circulatory systems. In this work, viscoelasticity is taken into account in entire networks via the Standard Linear Solid Model. The implementation of the viscoelastic contribution at boundaries (inlet, outlet and junctions), is carried out considering the hyperbolic nature of the mathematical model. A non-linear system is established based on the definition of the Riemann Problem at junctions, characterized by rarefaction waves separated by contact discontinuities, among which the mass and the total energy are conserved. Basic junction tests are analyzed, such as a trivial 2-vessels junction, for both a generic artery and vein, and a simple 3-vessels junction, considering an aortic bifurcation scenario. The chosen asymptotic-preserving IMEX Runge-Kutta Finite Volume scheme is demonstrated to be second-order accurate in the whole domain and well-balanced, even when including junctions. Two different benchmark models of the arterial network are implemented, differing in number of vessels and in viscoelastic parameters. Comparison of the results obtained in the two networks underlines the high sensitivity of the model to the chosen viscoelastic parameters. The conservation of the contribution provided by the viscoelastic characterization of vessel walls is assessed in the whole network, including junctions and boundary conditions.

Inferring the most likely configuration for a subset of variables of a joint distribution given the remaining ones - which we refer to as co-generation - is an important challenge that is computationally demanding for all but the simplest settings. This task has received a considerable amount of attention, particularly for classical ways of modeling distributions like structured prediction. In contrast, almost nothing is known about this task when considering recently proposed techniques for modeling high-dimensional distributions, particularly generative adversarial nets (GANs). Therefore, in this paper, we study the occurring challenges for co-generation with GANs. To address those challenges we develop an annealed importance sampling based Hamiltonian Monte Carlo co-generation algorithm. The presented approach significantly outperforms classical gradient based methods on a synthetic and on the CelebA and LSUN datasets.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

北京阿比特科技有限公司