We study the understanding of deep neural networks from the scope in which they are trained on. While the accuracy of these models is usually impressive on the aggregate level, they still make mistakes, sometimes on cases that appear to be trivial. Moreover, these models are not reliable in realizing what they do not know leading to failures such as adversarial vulnerability and out-of-distribution failures. Here, we propose a measure for quantifying the ambiguity of inputs for any given model with regard to the scope of its training. We define the ambiguity based on the geometric arrangements of the decision boundaries and the convex hull of training set in the feature space learned by the trained model, and demonstrate that a single ambiguity measure may detect a considerable portion of mistakes of a model on in-distribution samples, adversarial inputs, as well as out-of-distribution inputs. Using our ambiguity measure, a model may abstain from classification when it encounters ambiguous inputs leading to a better model accuracy not just on a given testing set, but on the inputs it may encounter at the world at large. In pursuit of this measure, we develop a theoretical framework that can identify the unknowns of the model in relation to its scope. We put this in perspective with the confidence of the model and develop formulations to identify the regions of the domain which are unknown to the model, yet the model is guaranteed to have high confidence.
We study the probabilistic modeling performed by Autoregressive Large Language Models through the angle of time directionality. We empirically find a time asymmetry exhibited by such models in their ability to model natural language: a difference in the average log-perplexity when trying to predict the next token versus when trying to predict the previous one. This difference is at the same time subtle and very consistent across various modalities (language, model size, training time, ...). Theoretically, this is surprising: from an information-theoretic point of view, there should be no such difference. We provide a theoretical framework to explain how such an asymmetry can appear from sparsity and computational complexity considerations, and outline a number of perspectives opened by our results.
Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios. While distributed DNNs have been studied, to the best of our knowledge the resilience of distributed DNNs to adversarial action still remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and introduce two new measurements for distortion and robustness. Our theoretical findings indicate that (i) assuming the same level of information distortion, latent features are always more robust than input representations; (ii) the adversarial robustness is jointly determined by the feature dimension and the generalization capability of the DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks to the ImageNet-1K dataset. Our experimental results support our theoretical findings by showing that the compressed latent representations can reduce the success rate of adversarial attacks by 88% in the best case and by 57% on the average compared to attacks to the input space.
Coreset selection seeks to choose a subset of crucial training samples for efficient learning. It has gained traction in deep learning, particularly with the surge in training dataset sizes. Sample selection hinges on two main aspects: a sample's representation in enhancing performance and the role of sample diversity in averting overfitting. Existing methods typically measure both the representation and diversity of data based on similarity metrics, such as L2-norm. They have capably tackled representation via distribution matching guided by the similarities of features, gradients, or other information between data. However, the results of effectively diverse sample selection are mired in sub-optimality. This is because the similarity metrics usually simply aggregate dimension similarities without acknowledging disparities among the dimensions that significantly contribute to the final similarity. As a result, they fall short of adequately capturing diversity. To address this, we propose a feature-based diversity constraint, compelling the chosen subset to exhibit maximum diversity. Our key lies in the introduction of a novel Contributing Dimension Structure (CDS) metric. Different from similarity metrics that measure the overall similarity of high-dimensional features, our CDS metric considers not only the reduction of redundancy in feature dimensions, but also the difference between dimensions that contribute significantly to the final similarity. We reveal that existing methods tend to favor samples with similar CDS, leading to a reduced variety of CDS types within the coreset and subsequently hindering model performance. In response, we enhance the performance of five classical selection methods by integrating the CDS constraint. Our experiments on three datasets demonstrate the general effectiveness of the proposed method in boosting existing methods.
Missing data is a pernicious problem in epidemiologic research. Research on the validity of complete case analysis for missing data has typically focused on estimating the average treatment effect (ATE) in the whole population. However, other target populations like the treated (ATT) or external targets can be of substantive interest. In such cases, whether missing covariate data occurs within or outside the target population may impact the validity of complete case analysis. We sought to assess bias in complete case analysis when covariate data is missing outside the target (e.g., missing covariate data among the untreated when estimating the ATT). We simulated a study of the effect of a binary treatment X on a binary outcome Y in the presence of 3 confounders C1-C3 that modified the risk difference (RD). We induced missingness in C1 only among the untreated under 4 scenarios: completely randomly (similar to MCAR); randomly based on C2 and C3 (similar to MAR); randomly based on C1 (similar to MNAR); or randomly based on Y (similar to MAR). We estimated the ATE and ATT using weighting and averaged results across the replicates. We conducted a parallel simulation transporting trial results to a target population in the presence of missing covariate data in the trial. In the complete case analysis, estimated ATE was unbiased only when C1 was MCAR among the untreated. The estimated ATT, on the other hand, was unbiased in all scenarios except when Y caused missingness. The parallel simulation of generalizing and transporting trial results saw similar bias patterns. If missing covariate data is only present outside the target population, complete case analysis is unbiased except when missingness is associated with the outcome.
Deep neural networks are vulnerable to adversarial samples. Adversarial fine-tuning methods aim to enhance adversarial robustness through fine-tuning the naturally pre-trained model in an adversarial training manner. However, we identify that some latent features of adversarial samples are confused by adversarial perturbation and lead to an unexpectedly increasing gap between features in the last hidden layer of natural and adversarial samples. To address this issue, we propose a disentanglement-based approach to explicitly model and further remove the latent features that cause the feature gap. Specifically, we introduce a feature disentangler to separate out the latent features from the features of the adversarial samples, thereby boosting robustness by eliminating the latent features. Besides, we align features in the pre-trained model with features of adversarial samples in the fine-tuned model, to further benefit from the features from natural samples without confusion. Empirical evaluations on three benchmark datasets demonstrate that our approach surpasses existing adversarial fine-tuning methods and adversarial training baselines.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.