We design simple and optimal policies that ensure safety against heavy-tailed risk in the classical multi-armed bandit problem. Recently, \cite{fan2021fragility} showed that information-theoretically optimized bandit algorithms suffer from serious heavy-tailed risk; that is, the worst-case probability of incurring a linear regret slowly decays at a rate of $1/T$, where $T$ is the time horizon. Inspired by their results, we further show that widely used policies such as the standard Upper Confidence Bound policy and the Thompson Sampling policy also incur heavy-tailed risk; and this heavy-tailed risk actually exists for all "instance-dependent consistent" policies. To ensure safety against such heavy-tailed risk, for the two-armed bandit setting, we provide a simple policy design that (i) has the worst-case optimality for the expected regret at order $\tilde O(\sqrt{T})$ and (ii) has the worst-case tail probability of incurring a linear regret decay at an exponential rate $\exp(-\Omega(\sqrt{T}))$. We further prove that this exponential decaying rate of the tail probability is optimal across all policies that have worst-case optimality for the expected regret. Finally, we improve the policy design and analysis to the general setting with an arbitrary $K$ number of arms. We provide detailed characterization of the tail probability bound for any regret threshold under our policy design. Namely, the worst-case probability of incurring a regret larger than $x$ is upper bounded by $\exp(-\Omega(x/\sqrt{KT}))$. Numerical experiments are conducted to illustrate the theoretical findings. Our results reveal insights on the incompatibility between consistency and light-tailed risk, whereas indicate that worst-case optimality on expected regret and light-tailed risk are compatible.
We consider minimizing the sum of three convex functions, where the first one F is smooth, the second one is nonsmooth and proximable and the third one is the composition of a nonsmooth proximable function with a linear operator L. This template problem has many applications, for instance, in image processing and machine learning. First, we propose a new primal-dual algorithm, which we call PDDY, for this problem. It is constructed by applying Davis-Yin splitting to a monotone inclusion in a primal-dual product space, where the operators are monotone under a specific metric depending on L. We show that three existing algorithms (the two forms of the Condat-Vu algorithm and the PD3O algorithm) have the same structure, so that PDDY is the fourth missing link in this self-consistent class of primal-dual algorithms. This representation eases the convergence analysis: it allows us to derive sublinear convergence rates in general, and linear convergence results in presence of strong convexity. Moreover, within our broad and flexible analysis framework, we propose new stochastic generalizations of the algorithms, in which a variance-reduced random estimate of the gradient of F is used, instead of the true gradient. Furthermore, we obtain, as a special case of PDDY, a linearly converging algorithm for the minimization of a strongly convex function F under a linear constraint; we discuss its important application to decentralized optimization.
While single-agent policy optimization in a fixed environment has attracted a lot of research attention recently in the reinforcement learning community, much less is known theoretically when there are multiple agents playing in a potentially competitive environment. We take steps forward by proposing and analyzing new fictitious play policy optimization algorithms for zero-sum Markov games with structured but unknown transitions. We consider two classes of transition structures: factored independent transition and single-controller transition. For both scenarios, we prove tight $\widetilde{\mathcal{O}}(\sqrt{K})$ regret bounds after $K$ episodes in a two-agent competitive game scenario. The regret of each agent is measured against a potentially adversarial opponent who can choose a single best policy in hindsight after observing the full policy sequence. Our algorithms feature a combination of Upper Confidence Bound (UCB)-type optimism and fictitious play under the scope of simultaneous policy optimization in a non-stationary environment. When both players adopt the proposed algorithms, their overall optimality gap is $\widetilde{\mathcal{O}}(\sqrt{K})$.
Modern statistical analyses often encounter datasets with massive sizes and heavy-tailed distributions. For datasets with massive sizes, traditional estimation methods can hardly be used to estimate the extreme value index directly. To address the issue, we propose here a subsampling-based method. Specifically, multiple subsamples are drawn from the whole dataset by using the technique of simple random subsampling with replacement. Based on each subsample, an approximate maximum likelihood estimator can be computed. The resulting estimators are then averaged to form a more accurate one. Under appropriate regularity conditions, we show theoretically that the proposed estimator is consistent and asymptotically normal. With the help of the estimated extreme value index, we can estimate high-level quantiles and tail probabilities of a heavy-tailed random variable consistently. Extensive simulation experiments are provided to demonstrate the promising performance of our method. A real data analysis is also presented for illustration purpose.
Deep neural networks (DNNs) are found to be vulnerable to adversarial noise. They are typically misled by adversarial samples to make wrong predictions. To alleviate this negative effect, in this paper, we investigate the dependence between outputs of the target model and input adversarial samples from the perspective of information theory, and propose an adversarial defense method. Specifically, we first measure the dependence by estimating the mutual information (MI) between outputs and the natural patterns of inputs (called natural MI) and MI between outputs and the adversarial patterns of inputs (called adversarial MI), respectively. We find that adversarial samples usually have larger adversarial MI and smaller natural MI compared with those w.r.t. natural samples. Motivated by this observation, we propose to enhance the adversarial robustness by maximizing the natural MI and minimizing the adversarial MI during the training process. In this way, the target model is expected to pay more attention to the natural pattern that contains objective semantics. Empirical evaluations demonstrate that our method could effectively improve the adversarial accuracy against multiple attacks.
We study reliable communication over point-to-point adversarial channels in which the adversary can observe the transmitted codeword via some function that takes the $n$-bit codeword as input and computes an $rn$-bit output for some given $r \in [0,1]$. We consider the scenario where the $rn$-bit observation is computationally bounded -- the adversary is free to choose an arbitrary observation function as long as the function can be computed using a polynomial amount of computational resources. This observation-based restriction differs from conventional channel-based computational limitations, where in the later case, the resource limitation applies to the computation of the (adversarial) channel error. For all $r \in [0,1-H(p)]$ where $H(\cdot)$ is the binary entropy function and $p$ is the adversary's error budget, we characterize the capacity of the above channel. For this range of $r$, we find that the capacity is identical to the completely obvious setting ($r=0$). This result can be viewed as a generalization of known results on myopic adversaries and channels with active eavesdroppers for which the observation process depends on a fixed distribution and fixed-linear structure, respectively, that cannot be chosen arbitrarily by the adversary.
This paper studies policy optimization algorithms for multi-agent reinforcement learning. We begin by proposing an algorithm framework for two-player zero-sum Markov Games in the full-information setting, where each iteration consists of a policy update step at each state using a certain matrix game algorithm, and a value update step with a certain learning rate. This framework unifies many existing and new policy optimization algorithms. We show that the state-wise average policy of this algorithm converges to an approximate Nash equilibrium (NE) of the game, as long as the matrix game algorithms achieve low weighted regret at each state, with respect to weights determined by the speed of the value updates. Next, we show that this framework instantiated with the Optimistic Follow-The-Regularized-Leader (OFTRL) algorithm at each state (and smooth value updates) can find an $\mathcal{\widetilde{O}}(T^{-5/6})$ approximate NE in $T$ iterations, and a similar algorithm with slightly modified value update rule achieves a faster $\mathcal{\widetilde{O}}(T^{-1})$ convergence rate. These improve over the current best $\mathcal{\widetilde{O}}(T^{-1/2})$ rate of symmetric policy optimization type algorithms. We also extend this algorithm to multi-player general-sum Markov Games and show an $\mathcal{\widetilde{O}}(T^{-3/4})$ convergence rate to Coarse Correlated Equilibria (CCE). Finally, we provide a numerical example to verify our theory and investigate the importance of smooth value updates, and find that using "eager" value updates instead (equivalent to the independent natural policy gradient algorithm) may significantly slow down the convergence, even on a simple game with $H=2$ layers.
We are motivated by the problem of learning policies for robotic systems with rich sensory inputs (e.g., vision) in a manner that allows us to guarantee generalization to environments unseen during training. We provide a framework for providing such generalization guarantees by leveraging a finite dataset of real-world environments in combination with a (potentially inaccurate) generative model of environments. The key idea behind our approach is to utilize the generative model in order to implicitly specify a prior over policies. This prior is updated using the real-world dataset of environments by minimizing an upper bound on the expected cost across novel environments derived via Probably Approximately Correct (PAC)-Bayes generalization theory. We demonstrate our approach on two simulated systems with nonlinear/hybrid dynamics and rich sensing modalities: (i) quadrotor navigation with an onboard vision sensor, and (ii) grasping objects using a depth sensor. Comparisons with prior work demonstrate the ability of our approach to obtain stronger generalization guarantees by utilizing generative models. We also present hardware experiments for validating our bounds for the grasping task.
Recent work has shown that finite mixture models with $m$ components are identifiable, while making no assumptions on the mixture components, so long as one has access to groups of samples of size $2m-1$ which are known to come from the same mixture component. In this work we generalize that result and show that, if every subset of $k$ mixture components of a mixture model are linearly independent, then that mixture model is identifiable with only $(2m-1)/(k-1)$ samples per group. We further show that this value cannot be improved. We prove an analogous result for a stronger form of identifiability known as "determinedness" along with a corresponding lower bound. This independence assumption almost surely holds if mixture components are chosen randomly from a $k$-dimensional space. We describe some implications of our results for multinomial mixture models and topic modeling.
Optimal execution is a sequential decision-making problem for cost-saving in algorithmic trading. Studies have found that reinforcement learning (RL) can help decide the order-splitting sizes. However, a problem remains unsolved: how to place limit orders at appropriate limit prices? The key challenge lies in the "continuous-discrete duality" of the action space. On the one hand, the continuous action space using percentage changes in prices is preferred for generalization. On the other hand, the trader eventually needs to choose limit prices discretely due to the existence of the tick size, which requires specialization for every single stock with different characteristics (e.g., the liquidity and the price range). So we need continuous control for generalization and discrete control for specialization. To this end, we propose a hybrid RL method to combine the advantages of both of them. We first use a continuous control agent to scope an action subset, then deploy a fine-grained agent to choose a specific limit price. Extensive experiments show that our method has higher sample efficiency and better training stability than existing RL algorithms and significantly outperforms previous learning-based methods for order execution.
Suppose we are given integer $k \leq n$ and $n$ boxes labeled $1,\ldots, n$ by an adversary, each containing a number chosen from an unknown distribution. We have to choose an order to sequentially open these boxes, and each time we open the next box in this order, we learn its number. If we reject a number in a box, the box cannot be recalled. Our goal is to accept the $k$ largest of these numbers, without necessarily opening all boxes. This is the free order multiple-choice secretary problem. Free order variants were studied extensively for the secretary and prophet problems. Kesselheim, Kleinberg, and Niazadeh KKN (STOC'15) initiated a study of randomness-efficient algorithms (with the cheapest order in terms of used random bits) for the free order secretary problems. We present an algorithm for free order multiple-choice secretary, which is simultaneously optimal for the competitive ratio and used amount of randomness. I.e., we construct a distribution on orders with optimal entropy $\Theta(\log\log n)$ such that a deterministic multiple-threshold algorithm is $1-O(\sqrt{\log k/k})$-competitive. This improves in three ways the previous best construction by KKN, whose competitive ratio is $1 - O(1/k^{1/3}) - o(1)$. Our competitive ratio is (near)optimal for the multiple-choice secretary problem; it works for exponentially larger parameter $k$; and our algorithm is a simple deterministic multiple-threshold algorithm, while that in KKN is randomized. We also prove a corresponding lower bound on the entropy of optimal solutions for the multiple-choice secretary problem, matching entropy of our algorithm, where no such previous lower bound was known. We obtain our algorithmic results with a host of new techniques, and with these techniques we also improve significantly the previous results of KKN about constructing entropy-optimal distributions for the classic free order secretary.