亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Industrial revolutions have historically disrupted manufacturing by introducing automation into production. Increasing automation reshapes the role of the human worker. Advances in robotics and artificial intelligence open new frontiers of human-machine collaboration. Such collaboration can be realized considering two sub-fields of artificial intelligence: active learning and explainable artificial intelligence. Active learning aims to devise strategies that help obtain data that allows machine learning algorithms to learn better. On the other hand, explainable artificial intelligence aims to make the machine learning models intelligible to the human person. The present work first describes Industry 5.0, human-machine collaboration, and state-of-the-art regarding quality inspection, emphasizing visual inspection. Then it outlines how human-machine collaboration could be realized and enhanced in visual inspection. Finally, some of the results obtained in the EU H2020 STAR project regarding visual inspection are shared, considering artificial intelligence, human digital twins, and cybersecurity.

相關內容

Adversarial face examples possess two critical properties: Visual Quality and Transferability. However, existing approaches rarely address these properties simultaneously, leading to subpar results. To address this issue, we propose a novel adversarial attack technique known as Adversarial Restoration (AdvRestore), which enhances both visual quality and transferability of adversarial face examples by leveraging a face restoration prior. In our approach, we initially train a Restoration Latent Diffusion Model (RLDM) designed for face restoration. Subsequently, we employ the inference process of RLDM to generate adversarial face examples. The adversarial perturbations are applied to the intermediate features of RLDM. Additionally, by treating RLDM face restoration as a sibling task, the transferability of the generated adversarial face examples is further improved. Our experimental results validate the effectiveness of the proposed attack method.

Planning and prediction are two important modules of autonomous driving and have experienced tremendous advancement recently. Nevertheless, most existing methods regard planning and prediction as independent and ignore the correlation between them, leading to the lack of consideration for interaction and dynamic changes of traffic scenarios. To address this challenge, we propose InteractionNet, which leverages transformer to share global contextual reasoning among all traffic participants to capture interaction and interconnect planning and prediction to achieve joint. Besides, InteractionNet deploys another transformer to help the model pay extra attention to the perceived region containing critical or unseen vehicles. InteractionNet outperforms other baselines in several benchmarks, especially in terms of safety, which benefits from the joint consideration of planning and forecasting. The code will be available at //github.com/fujiawei0724/InteractionNet.

Industry 4.0 has brought to attention the need for a connected, flexible, and autonomous production environment. The New Radio (NR)-sidelink, which was introduced by the third-generation partnership project (3GPP) in Release 16, can be particularly helpful for factories that need to facilitate cooperative and close-range communication. Automated Guided Vehicles (AGVs) are important for material handling and carriage within these environments, and using NR-sidelink communication can further enhance their performance. An efficient resource allocation mechanism is required to ensure reliable communication and avoid interference between AGVs and other wireless systems in the factory using NR-sidelink. This work evaluates the 3GPP standardized resource allocation algorithm for NR-sidelink for a use case of cooperative carrying AGVs. We suggest further improvements that are tailored to the quality of service (QoS) requirements of an indoor factory communication scenario with cooperative AGVs.The use of NR-sidelink communication has the potential to help meet the QoS requirements for different Industry 4.0 use cases. This work can be a foundation for further improvements in NR-sidelink in 3GPP Release 18 and beyond.

Neural based approaches to automatic evaluation of subjective responses have shown superior performance and efficiency compared to traditional rule-based and feature engineering oriented solutions. However, it remains unclear whether the suggested neural solutions are sufficient replacements of human raters as we find recent works do not properly account for rubric items that are essential for automated essay scoring during model training and validation. In this paper, we propose a series of data augmentation operations that train and test an automated scoring model to learn features and functions overlooked by previous works while still achieving state-of-the-art performance in the Automated Student Assessment Prize dataset.

Many NLP tasks can be regarded as a selection problem from a set of options, such as classification tasks, multi-choice question answering, etc. Textual entailment (TE) has been shown as the state-of-the-art (SOTA) approach to dealing with those selection problems. TE treats input texts as premises (P), options as hypotheses (H), then handles the selection problem by modeling (P, H) pairwise. Two limitations: first, the pairwise modeling is unaware of other options, which is less intuitive since humans often determine the best options by comparing competing candidates; second, the inference process of pairwise TE is time-consuming, especially when the option space is large. To deal with the two issues, this work first proposes a contextualized TE model (Context-TE) by appending other k options as the context of the current (P, H) modeling. Context-TE is able to learn more reliable decision for the H since it considers various context. Second, we speed up Context-TE by coming up with Parallel-TE, which learns the decisions of multiple options simultaneously. Parallel-TE significantly improves the inference speed while keeping comparable performance with Context-TE. Our methods are evaluated on three tasks (ultra-fine entity typing, intent detection and multi-choice QA) that are typical selection problems with different sizes of options. Experiments show our models set new SOTA performance; particularly, Parallel-TE is faster than the pairwise TE by k times in inference. Our code is publicly available at //github.com/jiangshdd/LearningToSelect.

There are individual differences in expressive behaviors driven by cultural norms and personality. This between-person variation can result in reduced emotion recognition performance. Therefore, personalization is an important step in improving the generalization and robustness of speech emotion recognition. In this paper, to achieve unsupervised personalized emotion recognition, we first pre-train an encoder with learnable speaker embeddings in a self-supervised manner to learn robust speech representations conditioned on speakers. Second, we propose an unsupervised method to compensate for the label distribution shifts by finding similar speakers and leveraging their label distributions from the training set. Extensive experimental results on the MSP-Podcast corpus indicate that our method consistently outperforms strong personalization baselines and achieves state-of-the-art performance for valence estimation.

Conjucyclic codes are part of a family of codes that includes cyclic, constacyclic, and quasi-cyclic codes, among others. Despite their importance in quantum error correction, they have not received much attention in the literature. This paper focuses on additive conjucyclic (ACC) codes over $\mathbb{F}_4$ and investigates their properties. Specifically, we derive the duals of ACC codes using a trace inner product and obtain the trace hull and its dimension. Also, establish a necessary and sufficient condition for an additive code to have a complementary dual (ACD). Additionally, we identify a necessary condition for an additive conjucyclic complementary pair of codes over $\mathbb{F}_4$. Furthermore, we show that the trace code of an ACC code is cyclic and provide a condition for the trace code of an ACC code to be LCD. To demonstrate the practical application of our findings, we construct some good entanglement-assisted quantum error-correcting (EAQEC) codes using the trace code of ACC codes.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司