The key result of this paper is to find all the joint distributions of random vectors whose sums $S=X_1+\ldots+X_d$ are minimal in convex order in the class of symmetric Bernoulli distributions. The minimal convex sums distributions are known to be strongly negatively dependent. Beyond their interest per se, these results enable us to explore negative dependence within the class of copulas. In fact, there are two classes of copulas that can be built from multivariate symmetric Bernoulli distributions: the extremal mixture copulas, and the FGM copulas. We study the extremal negative dependence structure of the copulas corresponding to symmetric Bernoulli vectors with minimal convex sums and we explicitly find a class of minimal dependence copulas. Our main results stem from the geometric and algebraic representations of multivariate symmetric Bernoulli distributions, which effectively encode several of their statistical properties.
We give a simple and computationally efficient algorithm that, for any constant $\varepsilon>0$, obtains $\varepsilon T$-swap regret within only $T = \mathsf{polylog}(n)$ rounds; this is an exponential improvement compared to the super-linear number of rounds required by the state-of-the-art algorithm, and resolves the main open problem of [Blum and Mansour 2007]. Our algorithm has an exponential dependence on $\varepsilon$, but we prove a new, matching lower bound. Our algorithm for swap regret implies faster convergence to $\varepsilon$-Correlated Equilibrium ($\varepsilon$-CE) in several regimes: For normal form two-player games with $n$ actions, it implies the first uncoupled dynamics that converges to the set of $\varepsilon$-CE in polylogarithmic rounds; a $\mathsf{polylog}(n)$-bit communication protocol for $\varepsilon$-CE in two-player games (resolving an open problem mentioned by [Babichenko-Rubinstein'2017, Goos-Rubinstein'2018, Ganor-CS'2018]); and an $\tilde{O}(n)$-query algorithm for $\varepsilon$-CE (resolving an open problem of [Babichenko'2020] and obtaining the first separation between $\varepsilon$-CE and $\varepsilon$-Nash equilibrium in the query complexity model). For extensive-form games, our algorithm implies a PTAS for $\mathit{normal}$ $\mathit{form}$ $\mathit{correlated}$ $\mathit{equilibria}$, a solution concept often conjectured to be computationally intractable (e.g. [Stengel-Forges'08, Fujii'23]).
Graph burning is a graph process that models the spread of social contagion. Initially, all the vertices of a graph $G$ are unburnt. At each step, an unburnt vertex is put on fire and the fire from burnt vertices of the previous step spreads to their adjacent unburnt vertices. This process continues till all the vertices are burnt. The burning number $b(G)$ of the graph $G$ is the minimum number of steps required to burn all the vertices in the graph. The burning number conjecture by Bonato et al. states that for a connected graph $G$ of order $n$, its burning number $b(G) \leq \lceil \sqrt{n} \rceil$. It is easy to observe that in order to burn a graph it is enough to burn its spanning tree. Hence it suffices to prove that for any tree $T$ of order $n$, its burning number $b(T) \leq \lceil \sqrt{n} \rceil$ where $T$ is the spanning tree of $G$. It was proved in 2018 that $b(T) \leq \lceil \sqrt{n + n_2 + 1/4} +1/2 \rceil$ for a tree $T$ where $n_2$ is the number of degree $2$ vertices in $T$. In this paper, we provide an algorithm to burn a tree and we improve the existing bound using this algorithm. We prove that $b(T)\leq \lceil \sqrt{n + n_2 + 8}\rceil -1$ which is an improved bound for $n\geq 50$. We also provide an algorithm to burn some subclasses of the binary tree and prove the burning number conjecture for the same.
Over the last decades, the family of $\alpha$-stale distributions has proven to be useful for modelling in telecommunication systems. Particularly, in the case of radar applications, finding a fast and accurate estimation for the amplitude density function parameters appears to be very important. In this work, the maximum likelihood estimator (MLE) is proposed for parameters of the amplitude distribution. To do this, the amplitude data are \emph{projected} on the horizontal and vertical axes using two simple transformations. It is proved that the \emph{projected} data follow a zero-location symmetric $\alpha$-stale distribution for which the MLE can be computed quite fast. The average of computed MLEs based on two \emph{projections} is considered as estimator for parameters of the amplitude distribution. Performance of the proposed \emph{projection} method is demonstrated through simulation study and analysis of two sets of real radar data.
Randomness in the void distribution within a ductile metal complicates quantitative modeling of damage following the void growth to coalescence failure process. Though the sequence of micro-mechanisms leading to ductile failure is known from unit cell models, often based on assumptions of a regular distribution of voids, the effect of randomness remains a challenge. In the present work, mesoscale unit cell models, each containing an ensemble of four voids of equal size that are randomly distributed, are used to find statistical effects on the yield surface of the homogenized material. A yield locus is found based on a mean yield surface and a standard deviation of yield points obtained from 15 realizations of the four-void unit cells. It is found that the classical GTN model very closely agrees with the mean of the yield points extracted from the unit cell calculations with random void distributions, while the standard deviation $\textbf{S}$ varies with the imposed stress state. It is shown that the standard deviation is nearly zero for stress triaxialities $T\leq1/3$, while it rapidly increases for triaxialities above $T\approx 1$, reaching maximum values of about $\textbf{S}/\sigma_0\approx0.1$ at $T \approx 4$. At even higher triaxialities it decreases slightly. The results indicate that the dependence of the standard deviation on the stress state follows from variations in the deformation mechanism since a well-correlated variation is found for the volume fraction of the unit cell that deforms plastically at yield. Thus, the random void distribution activates different complex localization mechanisms at high stress triaxialities that differ from the ligament thinning mechanism forming the basis for the classical GTN model. A method for introducing the effect of randomness into the GTN continuum model is presented, and an excellent comparison to the unit cell yield locus is achieved.
A family of stabilizer-free $P_k$ virtual elements are constructed on triangular meshes. When choosing an accurate and proper interpolation, the stabilizer of the virtual elements can be dropped while the quasi-optimality is kept. The interpolating space here is the space of continuous $P_k$ polynomials on the Hsieh-Clough-Tocher macro-triangle, where the macro-triangle is defined by connecting three vertices of a triangle with its barycenter. We show that such an interpolation preserves $P_k$ polynomials locally and enforces the coerciveness of the resulting bilinear form. Consequently the stabilizer-free virtual element solutions converge at the optimal order. Numerical tests are provided to confirm the theory and to be compared with existing virtual elements.
Hutchinson's estimator is a randomized algorithm that computes an $\epsilon$-approximation to the trace of any positive semidefinite matrix using $\mathcal{O}(1/\epsilon^2)$ matrix-vector products. An improvement of Hutchinson's estimator, known as Hutch++, only requires $\mathcal{O}(1/\epsilon)$ matrix-vector products. In this paper, we propose a generalization of Hutch++, which we call ContHutch++, that uses operator-function products to efficiently estimate the trace of any trace-class integral operator. Our ContHutch++ estimates avoid spectral artifacts introduced by discretization and are accompanied by rigorous high-probability error bounds. We use ContHutch++ to derive a new high-order accurate algorithm for quantum density-of-states and also show how it can estimate electromagnetic fields induced by incoherent sources.
Learning nonparametric systems of Ordinary Differential Equations (ODEs) dot x = f(t,x) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique. Learning f consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the L2 distance between x and its estimator and provide experimental comparisons with the state-of-the-art.
Approximated forms of the RII and RIII redistribution matrices are frequently applied to simplify the numerical solution of the radiative transfer problem for polarized radiation, taking partial frequency redistribution (PRD) effects into account. A widely used approximation for RIII is to consider its expression under the assumption of complete frequency redistribution (CRD) in the observer frame (RIII CRD). The adequacy of this approximation for modeling the intensity profiles has been firmly established. By contrast, its suitability for modeling scattering polarization signals has only been analyzed in a few studies, considering simplified settings. In this work, we aim at quantitatively assessing the impact and the range of validity of the RIII CRD approximation in the modeling of scattering polarization. Methods. We first present an analytic comparison between RIII and RIII CRD. We then compare the results of radiative transfer calculations, out of local thermodynamic equilibrium, performed with RIII and RIII CRD in realistic 1D atmospheric models. We focus on the chromospheric Ca i line at 4227 A and on the photospheric Sr i line at 4607 A.
We consider inverse problems where the conditional distribution of the observation ${\bf y}$ given the latent variable of interest ${\bf x}$ (also known as the forward model) is known, and we have access to a data set in which multiple instances of ${\bf x}$ and ${\bf y}$ are both observed. In this context, algorithm unrolling has become a very popular approach for designing state-of-the-art deep neural network architectures that effectively exploit the forward model. We analyze the statistical complexity of the gradient descent network (GDN), an algorithm unrolling architecture driven by proximal gradient descent. We show that the unrolling depth needed for the optimal statistical performance of GDNs is of order $\log(n)/\log(\varrho_n^{-1})$, where $n$ is the sample size, and $\varrho_n$ is the convergence rate of the corresponding gradient descent algorithm. We also show that when the negative log-density of the latent variable ${\bf x}$ has a simple proximal operator, then a GDN unrolled at depth $D'$ can solve the inverse problem at the parametric rate $O(D'/\sqrt{n})$. Our results thus also suggest that algorithm unrolling models are prone to overfitting as the unrolling depth $D'$ increases. We provide several examples to illustrate these results.
In this paper, we propose a method for solving a PPAD-complete problem [Papadimitriou, 1994]. Given is the payoff matrix $C$ of a symmetric bimatrix game $(C, C^T)$ and our goal is to compute a Nash equilibrium of $(C, C^T)$. In this paper, we devise a nonlinear replicator dynamic (whose right-hand-side can be obtained by solving a pair of convex optimization problems) with the following property: Under any invertible $0 \leq C \leq 1$, every orbit of our dynamic starting at an interior strategy of the standard simplex approaches a set of strategies of $(C, C^T)$ such that, for each strategy in this set, a symmetric Nash equilibrium strategy can be computed by solving the aforementioned convex mathematical programs. We prove convergence using previous results in analysis (the analytic implicit function theorem), nonlinear optimization theory (duality theory, Berge's maximum principle, and a theorem of Robinson [1980] on the Lipschitz continuity of parametric nonlinear programs), and dynamical systems theory (a theorem of Losert and Akin [1983] related to the LaSalle invariance principle that is stronger under a stronger assumption).