亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Wireless Federated Learning (FL) is an emerging distributed machine learning paradigm, particularly gaining momentum in domains with confidential and private data on mobile clients. However, the location-dependent performance, in terms of transmission rates and susceptibility to transmission errors, poses major challenges for wireless FL's convergence speed and accuracy. The challenge is more acute for hostile environments without a metric that authenticates the data quality and security profile of the clients. In this context, this paper proposes a novel risk-aware accelerated FL framework that accounts for the clients heterogeneity in the amount of possessed data, transmission rates, transmission errors, and trustworthiness. Classifying clients according to their location-dependent performance and trustworthiness profiles, we propose a dynamic risk-aware global model aggregation scheme that allows clients to participate in descending order of their transmission rates and an ascending trustworthiness constraint. In particular, the transmission rate is the dominant participation criterion for initial rounds to accelerate the convergence speed. Our model then progressively relaxes the transmission rate restriction to explore more training data at cell-edge clients. The aggregation rounds incorporate a debiasing factor that accounts for transmission errors. Risk-awareness is enabled by a validation set, where the base station eliminates non-trustworthy clients at the fine-tuning stage. The proposed scheme is benchmarked against a conservative scheme (i.e., only allowing trustworthy devices) and an aggressive scheme (i.e., oblivious to the trust metric). The numerical results highlight the superiority of the proposed scheme in terms of accuracy and convergence speed when compared to both benchmarks.

相關內容

There is a growing interest in utilizing machine learning (ML) methods for structural metamodeling due to the substantial computational cost of traditional numerical simulations. The existing data-driven strategies show potential limitations to the model robustness and interpretability as well as the dependency of rich data. To address these challenges, this paper presents a novel physics-informed machine learning (PiML) method, which incorporates scientific principles and physical laws into deep neural networks for modeling seismic responses of nonlinear structures. The basic concept is to constrain the solution space of the ML model within known physical bounds. This is made possible with three main features, namely, model order reduction, a long short-term memory (LSTM) networks, and Newton's second law (e.g., the equation of motion). Model order reduction is essential for handling structural systems with inherent redundancy and enhancing model efficiency. The LSTM network captures temporal dependencies, enabling accurate prediction of time series responses. The equation of motion is manipulated to learn system nonlinearities and confines the solution space within physically interpretable results. These features enable model training with relatively sparse data and offer benefits in terms of accuracy, interpretability, and robustness. Furthermore, a dataset of seismically designed archetype ductile planar steel moment resistant frames under horizontal seismic loading, available in the DesignSafe-CI Database, is considered for evaluation of the proposed method. The resulting metamodel is capable of handling more complex data compared to existing physics-guided LSTM models and outperforms other non-physics data-driven neural networks.

Federated learning (FL) has been widely deployed to enable machine learning training on sensitive data across distributed devices. However, the decentralized learning paradigm and heterogeneity of FL further extend the attack surface for backdoor attacks. Existing FL attack and defense methodologies typically focus on the whole model. None of them recognizes the existence of backdoor-critical (BC) layers-a small subset of layers that dominate the model vulnerabilities. Attacking the BC layers achieves equivalent effects as attacking the whole model but at a far smaller chance of being detected by state-of-the-art (SOTA) defenses. This paper proposes a general in-situ approach that identifies and verifies BC layers from the perspective of attackers. Based on the identified BC layers, we carefully craft a new backdoor attack methodology that adaptively seeks a fundamental balance between attacking effects and stealthiness under various defense strategies. Extensive experiments show that our BC layer-aware backdoor attacks can successfully backdoor FL under seven SOTA defenses with only 10% malicious clients and outperform the latest backdoor attack methods.

The development of Artificial Intelligence Generated Content (AIGC) has been facilitated by advancements in model algorithms, scalable foundation model architectures, and the availability of ample high-quality datasets. While AIGC has achieved remarkable performance, it still faces challenges, such as the difficulty of maintaining up-to-date and long-tail knowledge, the risk of data leakage, and the high costs associated with training and inference. Retrieval-Augmented Generation (RAG) has recently emerged as a paradigm to address such challenges. In particular, RAG introduces the information retrieval process, which enhances AIGC results by retrieving relevant objects from available data stores, leading to greater accuracy and robustness. In this paper, we comprehensively review existing efforts that integrate RAG technique into AIGC scenarios. We first classify RAG foundations according to how the retriever augments the generator. We distill the fundamental abstractions of the augmentation methodologies for various retrievers and generators. This unified perspective encompasses all RAG scenarios, illuminating advancements and pivotal technologies that help with potential future progress. We also summarize additional enhancements methods for RAG, facilitating effective engineering and implementation of RAG systems. Then from another view, we survey on practical applications of RAG across different modalities and tasks, offering valuable references for researchers and practitioners. Furthermore, we introduce the benchmarks for RAG, discuss the limitations of current RAG systems, and suggest potential directions for future research. Project: //github.com/hymie122/RAG-Survey

Spiking Neural Networks (SNNs) have emerged as a promising third generation of neural networks, offering unique characteristics such as binary outputs, high sparsity, and biological plausibility. However, the lack of effective learning algorithms remains a challenge for SNNs. For instance, while converting artificial neural networks (ANNs) to SNNs circumvents the need for direct training of SNNs, it encounters issues related to conversion errors and high inference time delays. In order to reduce or even eliminate conversion errors while decreasing inference time-steps, we have introduced a novel type of neuron called Group Neurons (GNs). One GN is composed of multiple Integrate-and-Fire (IF) neurons as members, and its neural dynamics are meticulously designed. Based on GNs, we have optimized the traditional ANN-SNN conversion framework. Specifically, we replace the IF neurons in the SNNs obtained by the traditional conversion framework with GNs. The resulting SNNs, which utilize GNs, are capable of achieving accuracy levels comparable to ANNs even within extremely short inference time-steps. The experiments on CIFAR10, CIFAR100, and ImageNet datasets demonstrate the superiority of the proposed methods in terms of both inference accuracy and latency. Code is available at //github.com/Lyu6PosHao/ANN2SNN_GN.

Recently, the advent of Large Visual-Language Models (LVLMs) has received increasing attention across various domains, particularly in the field of visual document understanding (VDU). Different from conventional vision-language tasks, VDU is specifically concerned with text-rich scenarios containing abundant document elements. Nevertheless, the importance of fine-grained features remains largely unexplored within the community of LVLMs, leading to suboptimal performance in text-rich scenarios. In this paper, we abbreviate it as the fine-grained feature collapse issue. With the aim of filling this gap, we propose a contrastive learning framework, termed Document Object COntrastive learning (DoCo), specifically tailored for the downstream tasks of VDU. DoCo leverages an auxiliary multimodal encoder to obtain the features of document objects and align them to the visual features generated by the vision encoder of LVLM, which enhances visual representation in text-rich scenarios. It can represent that the contrastive learning between the visual holistic representations and the multimodal fine-grained features of document objects can assist the vision encoder in acquiring more effective visual cues, thereby enhancing the comprehension of text-rich documents in LVLMs. We also demonstrate that the proposed DoCo serves as a plug-and-play pre-training method, which can be employed in the pre-training of various LVLMs without inducing any increase in computational complexity during the inference process. Extensive experimental results on multiple benchmarks of VDU reveal that LVLMs equipped with our proposed DoCo can achieve superior performance and mitigate the gap between VDU and generic vision-language tasks.

This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution, which heavily rely on precisely aligned paired datasets with pixel-level alignments. However, creating precisely aligned paired images presents significant challenges and hinders the advancement of methods trained on such data. To overcome this challenge, this paper introduces a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain. Specifically, we transform image features into the frequency domain using Discrete Fourier Transformation (DFT). Subsequently, frequency components (amplitude and phase) are processed separately to form the FDL loss function. Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain. Extensive experimental evaluations, focusing on image enhancement and super-resolution tasks, demonstrate that FDL outperforms existing misalignment-robust loss functions. Furthermore, we explore the potential of our FDL for image style transfer that relies solely on completely misaligned data. Our code is available at: //github.com/eezkni/FDL

In the realm of reinforcement learning (RL), accounting for risk is crucial for making decisions under uncertainty, particularly in applications where safety and reliability are paramount. In this paper, we introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation. Our framework covers a broad class of risk-sensitive RL, and facilitates analysis of the impact of estimation functions on the effectiveness of RSRL strategies and evaluation of their sample complexity. We design two innovative meta-algorithms: \texttt{RS-DisRL-M}, a model-based strategy for model-based function approximation, and \texttt{RS-DisRL-V}, a model-free approach for general value function approximation. With our novel estimation techniques via Least Squares Regression (LSR) and Maximum Likelihood Estimation (MLE) in distributional RL with augmented Markov Decision Process (MDP), we derive the first $\widetilde{\mathcal{O}}(\sqrt{K})$ dependency of the regret upper bound for RSRL with static LRM, marking a pioneering contribution towards statistically efficient algorithms in this domain.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

北京阿比特科技有限公司