亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Gromov--Hausdorff distance measures the difference in shape between compact metric spaces and poses a notoriously difficult problem in combinatorial optimization. We introduce its quadratic relaxation over a convex polytope whose solutions provably deliver the Gromov--Hausdorff distance. The optimality guarantee is enabled by the fact that the search space of our approach is not constrained to a generalization of bijections, unlike in other relaxations such as the Gromov--Wasserstein distance. We suggest the Frank--Wolfe algorithm for solving the relaxation in $O(n^3)$ time per iteration, and numerically demonstrate its performance on metric spaces of hundreds of points. In particular, we use it to obtain a new bound of the Gromov--Hausdorff distance between the unit circle and the unit hemisphere equipped with Euclidean metric. Our approach is implemented as a Python package dGH.

相關內容

Nowadays, while the demand for capacity continues to expand, the blossoming of Internet of Everything is bringing in a paradigm shift to new perceptions of communication networks, ushering in a plethora of totally unique services. To provide these services, Virtual Network Functions (VNFs) must be established and reachable by end-users, which will generate and consume massive volumes of data that must be processed locally for service responsiveness and scalability. For this to be realized, a solid cloud-network Integrated infrastructure is a necessity, and since cloud and network domains would be diverse in terms of characteristics but limited in terms of capability, communication and computing resources should be jointly controlled to unleash its full potential. Although several innovative methods have been proposed to allocate the resources, most of them either ignored network resources or relaxed the network as a simple graph, which are not applicable to Beyond 5G because of its dynamism and stringent QoS requirements. This paper fills in the gap by studying the joint problem of communication and computing resource allocation, dubbed CCRA, including VNF placement and assignment, traffic prioritization, and path selection considering capacity constraints as well as link and queuing delays, with the goal of minimizing overall cost. We formulate the problem as a non-linear programming model, and propose two approaches, dubbed B\&B-CCRA and WF-CCRA respectively, based on the Branch \& Bound and Water-Filling algorithms. Numerical simulations show that B\&B-CCRA can solve the problem optimally, whereas WF-CCRA can provide near-optimal solutions in significantly less time.

This work presents a new task of Text Expansion (TE), which aims to insert fine-grained modifiers into proper locations of the plain text to concretize or vivify human writings. Different from existing insertion-based writing assistance tasks, TE requires the model to be more flexible in both locating and generation, and also more cautious in keeping basic semantics. We leverage four complementary approaches to construct a dataset with 12 million automatically generated instances and 2K human-annotated references for both English and Chinese. To facilitate automatic evaluation, we design various metrics from multiple perspectives. In particular, we propose Info-Gain to effectively measure the informativeness of expansions, which is an important quality dimension in TE. On top of a pre-trained text-infilling model, we build both pipelined and joint Locate&Infill models, which demonstrate the superiority over the Text2Text baselines, especially in expansion informativeness. Experiments verify the feasibility of the TE task and point out potential directions for future research toward better automatic text expansion.

Fine-grained visual classification (FGVC) involves categorizing fine subdivisions within a broader category, which poses challenges due to subtle inter-class discrepancies and large intra-class variations. However, prevailing approaches primarily focus on uni-modal visual concepts. Recent advancements in pre-trained vision-language models have demonstrated remarkable performance in various high-level vision tasks, yet the applicability of such models to FGVC tasks remains uncertain. In this paper, we aim to fully exploit the capabilities of cross-modal description to tackle FGVC tasks and propose a novel multimodal prompting solution, denoted as MP-FGVC, based on the contrastive language-image pertaining (CLIP) model. Our MP-FGVC comprises a multimodal prompts scheme and a multimodal adaptation scheme. The former includes Subcategory-specific Vision Prompt (SsVP) and Discrepancy-aware Text Prompt (DaTP), which explicitly highlights the subcategory-specific discrepancies from the perspectives of both vision and language. The latter aligns the vision and text prompting elements in a common semantic space, facilitating cross-modal collaborative reasoning through a Vision-Language Fusion Module (VLFM) for further improvement on FGVC. Moreover, we tailor a two-stage optimization strategy for MP-FGVC to fully leverage the pre-trained CLIP model and expedite efficient adaptation for FGVC. Extensive experiments conducted on four FGVC datasets demonstrate the effectiveness of our MP-FGVC.

Supernova (SN) plays an important role in galaxy formation and evolution. In high-resolution galaxy simulations using massively parallel computing, short integration timesteps for SNe are serious bottlenecks. This is an urgent issue that needs to be resolved for future higher-resolution galaxy simulations. One possible solution would be to use the Hamiltonian splitting method, in which regions requiring short timesteps are integrated separately from the entire system. To apply this method to the particles affected by SNe in a smoothed-particle hydrodynamics simulation, we need to detect the shape of the shell on and within which such SN-affected particles reside during the subsequent global step in advance. In this paper, we develop a deep learning model, 3D-MIM, to predict a shell expansion after a SN explosion. Trained on turbulent cloud simulations with particle mass $m_{\rm gas}$~=~1 M$_\odot$, the model accurately reproduces the anisotropic shell shape, where densities decrease by over 10 per cent by the explosion. We also demonstrate that the model properly predicts the shell radius in the uniform medium beyond the training dataset of inhomogeneous turbulent clouds. We conclude that our model enables the forecast of the shell and its interior where SN-affected particles will be present.

Proton auroras are widely observed on the day side of Mars, identified as a significant intensity enhancement in the hydrogen Ly alpha (121.6 nm) emission between 120 and 150~km altitudes. Solar wind protons penetrating as energetic neutral atoms into the Martian thermosphere are thought to be responsible for these auroras. Understanding proton auroras is therefore important for characterizing the solar wind interaction with the atmosphere of Mars. Recent observations of spatially localized "patchy" proton auroras suggest a possible direct deposition of protons into the atmosphere of Mars during unstable solar wind conditions. Here, we develop a purely data-driven model of proton auroras using Mars Atmosphere and Volatile EvolutioN (MAVEN) in situ observations and limb scans of Ly alpha emissions between 2014 and 2022. We train an artificial neural network that reproduces individual Ly alpha intensities with a Pearson correlation of 0.95 along with a faithful reconstruction of the observed Ly alpha emission altitude profiles. By performing a SHapley Additive exPlanations (SHAP) analysis, we find that Solar Zenith Angle, seasonal CO2 atmosphere variability, solar wind temperature, and density are the most important features for the modelled proton auroras. We also demonstrate that our model can serve as an inexpensive tool for simulating and characterizing Ly alpha response under a variety of seasonal and upstream solar wind conditions.

Nonlinear Model Predictive Control (NMPC) is a state-of-the-art approach for locomotion and manipulation which leverages trajectory optimization at each control step. While the performance of this approach is computationally bounded, implementations of direct trajectory optimization that use iterative methods to solve the underlying moderately-large and sparse linear systems, are a natural fit for parallel hardware acceleration. In this work, we introduce MPCGPU, a GPU-accelerated, real-time NMPC solver that leverages an accelerated preconditioned conjugate gradient (PCG) linear system solver at its core. We show that MPCGPU increases the scalability and real-time performance of NMPC, solving larger problems, at faster rates. In particular, for tracking tasks using the Kuka IIWA manipulator, MPCGPU is able to scale to kilohertz control rates with trajectories as long as 512 knot points. This is driven by a custom PCG solver which outperforms state-of-the-art, CPU-based, linear system solvers by at least 10x for a majority of solves and 3.6x on average.

Current robotic grasping methods often rely on estimating the pose of the target object, explicitly predicting grasp poses, or implicitly estimating grasp success probabilities. In this work, we propose a novel approach that directly maps gripper poses to their corresponding grasp success values, without considering objectness. Specifically, we leverage a Neural Radiance Field (NeRF) architecture to learn a scene representation and use it to train a grasp success estimator that maps each pose in the robot's task space to a grasp success value. We employ this learned estimator to tune its inputs, i.e., grasp poses, by gradient-based optimization to obtain successful grasp poses. Contrary to other NeRF-based methods which enhance existing grasp pose estimation approaches by relying on NeRF's rendering capabilities or directly estimate grasp poses in a discretized space using NeRF's scene representation capabilities, our approach uniquely sidesteps both the need for rendering and the limitation of discretization. We demonstrate the effectiveness of our approach on four simulated 3DoF (Degree of Freedom) robotic grasping tasks and show that it can generalize to novel objects. Our best model achieves an average translation error of 3mm from valid grasp poses. This work opens the door for future research to apply our approach to higher DoF grasps and real-world scenarios.

Cyber-Physical Systems (CPSs) play a central role in the behavior of a wide range of autonomous physical systems such as medical devices, autonomous vehicles, and smart homes, many of which are safety-critical. CPSs are often specified iteratively as a sequence of models at different levels that can be tested via simulation systems at early stages of their development cycle. One such model is a hybrid automaton; these are used frequently for CPS applications and have the advantage of encapsulating both continuous and discrete CPS behaviors. When testing CPSs, engineers can take advantage of these models to generate test cases that target both types of these behaviors. Moreover, since these models are constructed early in the development process for CPSs, they allow test cases to be generated early in that process for those CPSs, even before simulation models of the CPSs have been designed. One challenge when testing CPSs is that these systems may operate differently even under an identically applied test scenario. In such cases, we cannot employ test oracles that use predetermined deterministic behaviors; instead, test oracles should consider sets of desired behaviors in order to determine whether the CPS has behaved appropriately. In this paper we present a test case generation technique, HYTEST, that generates test cases based on hybrid models, accompanied by appropriate test oracles, for use in testing CPSs early in their development cycle. To evaluate the effectiveness and efficiency of HYTEST, we conducted an empirical study in which we applied the technique to several CPSs and measured its ability to detect faults in those CPSs and the amount of time required to perform the testing process. The results of the study show that HYTEST was able to detect faults more effectively and efficiently than the baseline techniques we compare it to.

Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.

In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.

北京阿比特科技有限公司