亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A bidirectional integrated sensing and communication (ISAC) system is proposed, in which a pair of transceivers carry out two-way communication and mutual sensing. Both full-duplex and half-duplex operations in narrowband and wideband systems are conceived for the bidirectional ISAC. 1) For the narrowband system, the conventional full-duplex and half-duplex operations are redesigned to take into account sensing echo signals. Then, the transmit beamforming design of both transceivers is proposed for addressing the sensing and communication (S\&C) tradeoff. A one-layer iterative algorithm relying on successive convex approximation (SCA) is proposed to obtain Karush-Kuhn-Tucker (KKT) optimal solutions. 2) For the wideband system, the new full-duplex and half-duplex operations are proposed for the bidirectional ISAC. In particular, the frequency-selective fading channel is tackled by delay pre-compensation and path-based beamforming. By redesigning the proposed SCA-based algorithm, the KKT optimal solutions for path-based beamforming for characterizing the S\&C tradeoff are obtained. Finally, the numerical results show that: i) For both bandwidth scenarios, the existence of the interference introduced by sensing results in full-duplex may not always outperform half-duplex, especially in the sensing-prior regime or when the communication channel is line-of-sight-dominated; and ii) For both duplex operations, it is sufficient to reuse communication signals for sensing in the narrowband system, while an additional dedicated sensing signal is required in the wideband system.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.

Virtual reality (VR) over wireless is expected to be one of the killer applications in next-generation communication networks. Nevertheless, the huge data volume along with stringent requirements on latency and reliability under limited bandwidth resources makes untethered wireless VR delivery increasingly challenging. Such bottlenecks, therefore, motivate this work to seek the potential of using semantic communication, a new paradigm that promises to significantly ease the resource pressure, for efficient VR delivery. To this end, we propose a novel framework, namely WIreless SEmantic deliveRy for VR (WiserVR), for delivering consecutive 360{\deg} video frames to VR users. Specifically, deep learning-based multiple modules are well-devised for the transceiver in WiserVR to realize high-performance feature extraction and semantic recovery. Among them, we dedicatedly develop a concept of semantic location graph and leverage the joint-semantic-channel-coding method with knowledge sharing to not only substantially reduce communication latency, but also to guarantee adequate transmission reliability and resilience under various channel states. Moreover, implementation of WiserVR is presented, followed by corresponding initial simulations for performance evaluation compared with benchmarks. Finally, we discuss several open issues and offer feasible solutions to unlock the full potential of WiserVR.

Reconfigurable intelligent surface (RIS)-empowered communication is a revolutionary technology that enables to manipulate wireless propagation environment via smartly controllable low-cost reflecting surfaces. However, in order to outperform conventional communication systems, an RIS-aided system with solely passive reflection requires an extremely large surface. To meet this challenge, the concept of active RIS, which performs simultaneous amplification and reflection on the incident signal at the expense of additional power consumption, has been recently introduced. In this paper, deploying an active RIS, we propose a novel beamforming concept, over-the-air beamforming, for RIS-aided multi-user multiple-input single-output (MISO) transmission schemes without requiring any pre/post signal processing hardware designs at the transmitter and receiver sides. In the proposed over-the-air beamforming-based transmission scheme, the reflection coefficients of the active RIS elements are customized to maximize the sum-rate gain. To tackle this issue, first, a non-convex quadratically constrained quadratic programming (QCQP) problem is formulated. Then, using semidefinite relaxation (SDR) approach, this optimization problem is converted to a convex feasibility problem, which is efficiently solved using the CVX optimization toolbox. Moreover, taking inspiration from this beamforming technique, a novel high-rate receive index modulation (IM) scheme with a low-complexity sub-optimal detector is developed. Through comprehensive simulation results, the sum-rate and bit error rate (BER) performance of the proposed designs are investigated.

Vehicle-to-everything (V2X) communication is expected to support many promising applications in next-generation wireless networks. The recent development of integrated sensing and communications (ISAC) technology offers new opportunities to meet the stringent sensing and communication (S&C) requirements in V2X networks. However, considering the relatively small radar cross section (RCS) of the vehicles and the limited transmit power of the road site units (RSUs), the power of echoes may be too weak to achieve effective target detection and tracking. To handle this issue, we propose a novel sensing-assisted communication scheme by employing an intelligent Omni-surface (IOS) on the surface of the vehicle. First, a two-phase ISAC protocol, including the S&C phase and the communication-only phase, was presented to maximize the throughput by jointly optimizing the IOS phase shifts and the sensing duration. Then, we derive a closed-form expression of the achievable rate which achieves a good approximation. Furthermore, a sufficient and necessary condition for the existence of the S&C phase is derived to provide useful insights for practical system design. Simulation results demonstrate the effectiveness of the proposed sensing-assisted communication scheme in achieving high throughput with low transmit power requirements.

The recent development of integrated sensing and communications (ISAC) technology offers new opportunities to meet high-throughput and low-latency communication as well as high-resolution localization requirements in vehicular networks. However, considering the limited transmit power of the road site units (RSUs) and the relatively small radar cross section (RCS) of vehicles with random reflection coefficients, the power of echo signals may be too weak to be utilized for effective target detection and tracking. Moreover, high-frequency signals usually suffer from large fading loss when penetrating vehicles, which seriously degrades the quality of communication services inside the vehicles. To handle this issue, we propose a novel sensing-assisted communication mechanism by employing an intelligent omni-surface (IOS) on the surface of vehicles to enhance both sensing and communication (S&C) performance. To this end, we first propose a two-stage ISAC protocol, including the joint S&C stage and the communication-only stage, to fulfill more efficient communication performance improvements benefited from sensing. The achievable communication rate maximization problem is formulated by jointly optimizing the transmit beamforming, the IOS phase shifts, and the duration of the joint S&C stage. However, solving this ISAC optimization problem is highly non-trivial since inaccurate estimation and measurement information renders the achievable rate lack of closed-form expression. To handle this issue, we first derive a closed-form expression of the achievable rate under uncertain location information, and then unveil a sufficient and necessary condition for the existence of the joint S&C stage to offer useful insights for practical system design. Moreover, two typical scenarios including interference-limited and noise-limited cases are analyzed.

RIS is one of the significant technological advancements that will mark next-generation wireless. RIS technology also opens up the possibility of new security threats, since the reflection of impinging signals can be used for malicious purposes. This article introduces the basic concept for a RIS-assisted attack that re-uses the legitimate signal towards a malicious objective. Specific attacks are identified from this base scenario, and the RIS-assisted signal cancellation attack is selected for evaluation as an attack that inherently exploits RIS capabilities. The key takeaway from the evaluation is that an effective attack requires accurate channel information, a RIS deployed in a favorable location (from the point of view of the attacker), and it disproportionately affects legitimate links that already suffer from reduced path loss. These observations motivate specific security solutions and recommendations for future work.

Deformable image registration is a key task in medical image analysis. The Brain Tumor Sequence Registration challenge (BraTS-Reg) aims at establishing correspondences between pre-operative and follow-up scans of the same patient diagnosed with an adult brain diffuse high-grade glioma and intends to address the challenging task of registering longitudinal data with major tissue appearance changes. In this work, we proposed a two-stage cascaded network based on the Inception and TransMorph models. The dataset for each patient was comprised of a native pre-contrast (T1), a contrast-enhanced T1-weighted (T1-CE), a T2-weighted (T2), and a Fluid Attenuated Inversion Recovery (FLAIR). The Inception model was used to fuse the 4 image modalities together and extract the most relevant information. Then, a variant of the TransMorph architecture was adapted to generate the displacement fields. The Loss function was composed of a standard image similarity measure, a diffusion regularizer, and an edge-map similarity measure added to overcome intensity dependence and reinforce correct boundary deformation. We observed that the addition of the Inception module substantially increased the performance of the network. Additionally, performing an initial affine registration before training the model showed improved accuracy in the landmark error measurements between pre and post-operative MRIs. We observed that our best model composed of the Inception and TransMorph architectures while using an initially affine registered dataset had the best performance with a median absolute error of 2.91 (initial error = 7.8). We achieved 6th place at the time of model submission in the final testing phase of the BraTS-Reg challenge.

In the realm of wireless communications in 5G, 6G and beyond, deploying unmanned aerial vehicle (UAV) has been an innovative approach to extend the coverage area due to its easy deployment. Moreover, reconfigurable intelligent surface (RIS) has also emerged as a new paradigm with the goals of enhancing the average sum-rate as well as energy efficiency. By combining these attractive features, an energy-efficient RIS-mounted multiple UAVs (aerial RISs: ARISs) assisted downlink communication system is studied. Due to the obstruction, user equipments (UEs) can have a poor line of sight to communicate with the base station (BS). To solve this, multiple ARISs are implemented to assist the communication between the BS and UEs. Then, the joint optimization problem of deployment of ARIS, ARIS reflective elements on/off states, phase shift, and power control of the multiple ARISs-assisted communication system is formulated. The problem is challenging to solve since it is mixed-integer, non-convex, and NP-hard. To overcome this, it is decomposed into three sub-problems. Afterwards, successive convex approximation (SCA), actor-critic proximal policy optimization (AC-PPO), and whale optimization algorithm (WOA) are employed to solve these sub-problems alternatively. Finally, extensive simulation results have been generated to illustrate the efficacy of our proposed algorithms.

Low-dimensional topological objects, such as knots and braids, have become prevalent in multiple areas of physics, such as fluid dynamics, optics, and quantum information processing. Such objects also now play a role in cryptography, where a framed knot can store encoded information using its braid representation for communications purposes. The greater resilience of low-dimensional topological elements under deformations allows them to be employed as a reliable framework for information exchange. Here, we introduce a challenge-response protocol as an application of this construction for authentication. We provide illustrative examples of both procedures showing how framed links and braids may help to enhance secure communication.

A variety of deep neural networks have been applied in medical image segmentation and achieve good performance. Unlike natural images, medical images of the same imaging modality are characterized by the same pattern, which indicates that same normal organs or tissues locate at similar positions in the images. Thus, in this paper we try to incorporate the prior knowledge of medical images into the structure of neural networks such that the prior knowledge can be utilized for accurate segmentation. Based on this idea, we propose a novel deep network called knowledge-based fully convolutional network (KFCN) for medical image segmentation. The segmentation function and corresponding error is analyzed. We show the existence of an asymptotically stable region for KFCN which traditional FCN doesn't possess. Experiments validate our knowledge assumption about the incorporation of prior knowledge into the convolution kernels of KFCN and show that KFCN can achieve a reasonable segmentation and a satisfactory accuracy.

北京阿比特科技有限公司