亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A long-standing conjecture for the traveling salesman problem (TSP) states that the integrality gap of the standard linear programming relaxation of the TSP is at most 4/3. Despite significant efforts, the conjecture remains open. We consider the half-integral case, in which the LP has solution values in $\{0, 1/2, 1\}$. Such instances have been conjectured to be the most difficult instances for the overall four-thirds conjecture. Karlin, Klein, and Oveis Gharan, in a breakthrough result, were able to show that in the half-integral case, the integrality gap is at most 1.49993. This result led to the first significant progress on the overall conjecture in decades; the same authors showed the integrality gap is at most $1.5- 10^{-36}$ in the non-half-integral case. For the half-integral case, the current best-known ratio is 1.4983, a result by Gupta et al. With the improvements on the 3/2 bound remaining very incremental even in the half-integral case, we turn the question around and look for a large class of half-integral instances for which we can prove that the 4/3 conjecture is correct. The previous works on the half-integral case perform induction on a hierarchy of critical tight sets in the support graph of the LP solution, in which some of the sets correspond to "cycle cuts" and the others to "degree cuts". We show that if all the sets in the hierarchy correspond to cycle cuts, then we can find a distribution of tours whose expected cost is at most 4/3 times the value of the half-integral LP solution; sampling from the distribution gives us a randomized 4/3-approximation algorithm. We note that the known bad cases for the integrality gap have a gap of 4/3 and have a half-integral LP solution in which all the critical tight sets in the hierarchy are cycle cuts; thus our result is tight.

相關內容

Offline Reinforcement Learning (RL) methods leverage previous experiences to learn better policies than the behavior policy used for data collection. In contrast to behavior cloning, which assumes the data is collected from expert demonstrations, offline RL can work with non-expert data and multimodal behavior policies. However, offline RL algorithms face challenges in handling distribution shifts and effectively representing policies due to the lack of online interaction during training. Prior work on offline RL uses conditional diffusion models to represent multimodal behavior in the dataset. Nevertheless, these methods are not tailored toward alleviating the out-of-distribution state generalization. We introduce a novel method, named State Reconstruction for Diffusion Policies (SRDP), incorporating state reconstruction feature learning in the recent class of diffusion policies to address the out-of-distribution generalization problem. State reconstruction loss promotes more descriptive representation learning of states to alleviate the distribution shift incurred by the out-of-distribution (OOD) states. We design a novel 2D Multimodal Contextual Bandit environment to illustrate the OOD generalization of SRDP compared to prior algorithms. In addition, we assess the performance of our model on D4RL continuous control benchmarks, namely the navigation of an 8-DoF ant and forward locomotion of half-cheetah, hopper, and walker2d, achieving state-of-the-art results.

The protection of Industrial Control Systems (ICS) that are employed in public critical infrastructures is of utmost importance due to catastrophic physical damages cyberattacks may cause. The research community requires testbeds for validation and comparing various intrusion detection algorithms to protect ICS. However, there exist high barriers to entry for research and education in the ICS cybersecurity domain due to expensive hardware, software, and inherent dangers of manipulating real-world systems. To close the gap, built upon recently developed 3D high-fidelity simulators, we further showcase our integrated framework to automatically launch cyberattacks, collect data, train machine learning models, and evaluate for practical chemical and manufacturing processes. On our testbed, we validate our proposed intrusion detection model called Minimal Threshold and Window SVM (MinTWin SVM) that utilizes unsupervised machine learning via a one-class SVM in combination with a sliding window and classification threshold. Results show that MinTWin SVM minimizes false positives and is responsive to physical process anomalies. Furthermore, we incorporate our framework with ICS cybersecurity education by using our dataset in an undergraduate machine learning course where students gain hands-on experience in practicing machine learning theory with a practical ICS dataset. All of our implementations have been open-sourced.

Estimating the state preparation fidelity of highly entangled states on noisy intermediate-scale quantum (NISQ) devices is an important task for benchmarking and application considerations. Unfortunately, exact fidelity measurements quickly become prohibitively expensive, as they scale exponentially as $O(3^N)$ for $N$-qubit states, using full state tomography with measurements in all Pauli bases combinations. However, Somma and others [PhysRevA.74.052302] established that the complexity could be drastically reduced when looking at fidelity lower bounds for states that exhibit symmetries, such as Dicke States and GHZ States. For larger states, these bounds still need to be tight enough to provide reasonable estimations on NISQ devices. For the first time and more than 15 years after the theoretical introduction, we report meaningful lower bounds for the state preparation fidelity of all Dicke States up to $N=10$, and all GHZ states up to $N=20$ on Quantinuum H1 ion-trap systems using efficient implementations of recently proposed scalable circuits for these states. Our achieved lower bounds match or exceed previously reported exact fidelities on superconducting systems for much smaller states. This work provides a path forward to benchmarking entanglement as NISQ devices improve in size and quality.

This paper addresses the tradeoff between standard accuracy on clean examples and robustness against adversarial examples in deep neural networks (DNNs). Although adversarial training (AT) improves robustness, it degrades the standard accuracy, thus yielding the tradeoff. To mitigate this tradeoff, we propose a novel AT method called ARREST, which comprises three components: (i) adversarial finetuning (AFT), (ii) representation-guided knowledge distillation (RGKD), and (iii) noisy replay (NR). AFT trains a DNN on adversarial examples by initializing its parameters with a DNN that is standardly pretrained on clean examples. RGKD and NR respectively entail a regularization term and an algorithm to preserve latent representations of clean examples during AFT. RGKD penalizes the distance between the representations of the standardly pretrained and AFT DNNs. NR switches input adversarial examples to nonadversarial ones when the representation changes significantly during AFT. By combining these components, ARREST achieves both high standard accuracy and robustness. Experimental results demonstrate that ARREST mitigates the tradeoff more effectively than previous AT-based methods do.

Practical uses of Artificial Intelligence (AI) in the real world have demonstrated the importance of embedding moral choices into intelligent agents. They have also highlighted that defining top-down ethical constraints on AI according to any one type of morality is extremely challenging and can pose risks. A bottom-up learning approach may be more appropriate for studying and developing ethical behavior in AI agents. In particular, we believe that an interesting and insightful starting point is the analysis of emergent behavior of Reinforcement Learning (RL) agents that act according to a predefined set of moral rewards in social dilemmas. In this work, we present a systematic analysis of the choices made by intrinsically-motivated RL agents whose rewards are based on moral theories. We aim to design reward structures that are simplified yet representative of a set of key ethical systems. Therefore, we first define moral reward functions that distinguish between consequence- and norm-based agents, between morality based on societal norms or internal virtues, and between single- and mixed-virtue (e.g., multi-objective) methodologies. Then, we evaluate our approach by modeling repeated dyadic interactions between learning moral agents in three iterated social dilemma games (Prisoner's Dilemma, Volunteer's Dilemma and Stag Hunt). We analyze the impact of different types of morality on the emergence of cooperation, defection or exploitation, and the corresponding social outcomes. Finally, we discuss the implications of these findings for the development of moral agents in artificial and mixed human-AI societies.

One of the fundamental challenges in drawing causal inferences from observational studies is that the assumption of no unmeasured confounding is not testable from observed data. Therefore, assessing sensitivity to this assumption's violation is important to obtain valid causal conclusions in observational studies. Although several sensitivity analysis frameworks are available in the casual inference literature, none of them are applicable to observational studies with multivalued treatments. To address this issue, we propose a sensitivity analysis framework for performing sensitivity analysis in multivalued treatment settings. Within this framework, a general class of additive causal estimands has been proposed. We demonstrate that the estimation of the causal estimands under the proposed sensitivity model can be performed very efficiently. Simulation results show that the proposed framework performs well in terms of bias of the point estimates and coverage of the confidence intervals when there is sufficient overlap in the covariate distributions. We illustrate the application of our proposed method by conducting an observational study that estimates the causal effect of fish consumption on blood mercury levels.

While measuring socioeconomic indicators is critical for local governments to make informed policy decisions, such measurements are often unavailable at fine-grained levels like municipality. This study employs deep learning-based predictions from satellite images to close the gap. We propose a method that assigns a socioeconomic score to each satellite image by capturing the distributional behavior observed in larger areas based on the ground truth. We train an ordinal regression scoring model and adjust the scores to follow the common power law within and across regions. Evaluation based on official statistics in South Korea shows that our method outperforms previous models in predicting population and employment size at both the municipality and grid levels. Our method also demonstrates robust performance in districts with uneven development, suggesting its potential use in developing countries where reliable, fine-grained data is scarce.

An accurate data-based prediction of the long-term evolution of Hamiltonian systems requires a network that preserves the appropriate structure under each time step. Every Hamiltonian system contains two essential ingredients: the Poisson bracket and the Hamiltonian. Hamiltonian systems with symmetries, whose paradigm examples are the Lie-Poisson systems, have been shown to describe a broad category of physical phenomena, from satellite motion to underwater vehicles, fluids, geophysical applications, complex fluids, and plasma physics. The Poisson bracket in these systems comes from the symmetries, while the Hamiltonian comes from the underlying physics. We view the symmetry of the system as primary, hence the Lie-Poisson bracket is known exactly, whereas the Hamiltonian is regarded as coming from physics and is considered not known, or known approximately. Using this approach, we develop a network based on transformations that exactly preserve the Poisson bracket and the special functions of the Lie-Poisson systems (Casimirs) to machine precision. We present two flavors of such systems: one, where the parameters of transformations are computed from data using a dense neural network (LPNets), and another, where the composition of transformations is used as building blocks (G-LPNets). We also show how to adapt these methods to a larger class of Poisson brackets. We apply the resulting methods to several examples, such as rigid body (satellite) motion, underwater vehicles, a particle in a magnetic field, and others. The methods developed in this paper are important for the construction of accurate data-based methods for simulating the long-term dynamics of physical systems.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司