The speech-to-singing (STS) voice conversion task aims to generate singing samples corresponding to speech recordings while facing a major challenge: the alignment between the target (singing) pitch contour and the source (speech) content is difficult to learn in a text-free situation. This paper proposes AlignSTS, an STS model based on explicit cross-modal alignment, which views speech variance such as pitch and content as different modalities. Inspired by the mechanism of how humans will sing the lyrics to the melody, AlignSTS: 1) adopts a novel rhythm adaptor to predict the target rhythm representation to bridge the modality gap between content and pitch, where the rhythm representation is computed in a simple yet effective way and is quantized into a discrete space; and 2) uses the predicted rhythm representation to re-align the content based on cross-attention and conducts a cross-modal fusion for re-synthesize. Extensive experiments show that AlignSTS achieves superior performance in terms of both objective and subjective metrics. Audio samples are available at //alignsts.github.io.
Several recent studies have reported negative results when using heteroskedastic neural regression models to model real-world data. In particular, for overparameterized models, the mean and variance networks are powerful enough to either fit every single data point (while shrinking the predicted variances to zero), or to learn a constant prediction with an output variance exactly matching every predicted residual (i.e., explaining the targets as pure noise). This paper studies these difficulties from the perspective of statistical physics. We show that the observed instabilities are not specific to any neural network architecture but are already present in a field theory of an overparameterized conditional Gaussian likelihood model. Under light assumptions, we derive a nonparametric free energy that can be solved numerically. The resulting solutions show excellent qualitative agreement with empirical model fits on real-world data and, in particular, prove the existence of phase transitions, i.e., abrupt, qualitative differences in the behaviors of the regressors upon varying the regularization strengths on the two networks. Our work thus provides a theoretical explanation for the necessity to carefully regularize heteroskedastic regression models. Moreover, the insights from our theory suggest a scheme for optimizing this regularization which is quadratically more efficient than the naive approach.
Blockwise missing data occurs frequently when we integrate multisource or multimodality data where different sources or modalities contain complementary information. In this paper, we consider a high-dimensional linear regression model with blockwise missing covariates and a partially observed response variable. Under this framework, we propose a computationally efficient estimator for the regression coefficient vector based on carefully constructed unbiased estimating equations and a blockwise imputation procedure, and obtain its rate of convergence. Furthermore, building upon an innovative projected estimating equation technique that intrinsically achieves bias-correction of the initial estimator, we propose a nearly unbiased estimator for each individual regression coefficient, which is asymptotically normally distributed under mild conditions. Based on these debiased estimators, asymptotically valid confidence intervals and statistical tests about each regression coefficient are constructed. Numerical studies and application analysis of the Alzheimer's Disease Neuroimaging Initiative data show that the proposed method performs better and benefits more from unsupervised samples than existing methods.
We consider the problem of identifying the signal shared between two one-dimensional target variables, in the presence of additional multivariate observations. Canonical Correlation Analysis (CCA)-based methods have traditionally been used to identify shared variables, however, they were designed for multivariate targets and only offer trivial solutions for univariate cases. In the context of Multi-Task Learning (MTL), various models were postulated to learn features that are sparse and shared across multiple tasks. However, these methods were typically evaluated by their predictive performance. To the best of our knowledge, no prior studies systematically evaluated models in terms of correctly recovering the shared signal. Here, we formalize the setting of univariate shared information retrieval, and propose ICM, an evaluation metric which can be used in the presence of ground-truth labels, quantifying 3 aspects of the learned shared features. We further propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables. We benchmark the models on a range of scenarios on synthetic data with known ground-truths and observe DCID outperforming the baselines in a wide range of settings. Finally, we demonstrate a real-life application of DCID on brain Magnetic Resonance Imaging (MRI) data, where we are able to extract more accurate predictors of changes in brain regions and obesity. The code for our experiments as well as the supplementary materials are available at //github.com/alexrakowski/dcid
Large language models (LLMs) represent a major advance in artificial intelligence (AI) research. However, the widespread use of LLMs is also coupled with significant ethical and social challenges. Previous research has pointed towards auditing as a promising governance mechanism to help ensure that AI systems are designed and deployed in ways that are ethical, legal, and technically robust. However, existing auditing procedures fail to address the governance challenges posed by LLMs, which display emergent capabilities and are adaptable to a wide range of downstream tasks. In this article, we address that gap by outlining a novel blueprint for how to audit LLMs. Specifically, we propose a three-layered approach, whereby governance audits (of technology providers that design and disseminate LLMs), model audits (of LLMs after pre-training but prior to their release), and application audits (of applications based on LLMs) complement and inform each other. We show how audits, when conducted in a structured and coordinated manner on all three levels, can be a feasible and effective mechanism for identifying and managing some of the ethical and social risks posed by LLMs. However, it is important to remain realistic about what auditing can reasonably be expected to achieve. Therefore, we discuss the limitations not only of our three-layered approach but also of the prospect of auditing LLMs at all. Ultimately, this article seeks to expand the methodological toolkit available to technology providers and policymakers who wish to analyse and evaluate LLMs from technical, ethical, and legal perspectives.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Recent advances in representation learning have demonstrated an ability to represent information from different modalities such as video, text, and audio in a single high-level embedding vector. In this work we present a self-supervised learning framework that is able to learn a representation that captures finer levels of granularity across different modalities such as concepts or events represented by visual objects or spoken words. Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities. Beyond the shared embedding space, we propose a Cross-Modal Code Matching objective that forces the representations from different views (modalities) to have a similar distribution over the discrete embedding space such that cross-modal objects/actions localization can be performed without direct supervision. In our experiments we show that the proposed discretized multi-modal fine-grained representation (e.g., pixel/word/frame) can complement high-level summary representations (e.g., video/sentence/waveform) for improved performance on cross-modal retrieval tasks. We also observe that the discretized representation uses individual clusters to represent the same semantic concept across modalities.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. However, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.
Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.