The Restricted Additive Schwarz method with impedance transmission conditions, also known as the Optimised Restricted Additive Schwarz (ORAS) method, is a simple overlapping one-level parallel domain decomposition method, which has been successfully used as an iterative solver and as a preconditioner for discretized Helmholtz boundary-value problems. In this paper, we give, for the first time, a convergence analysis for ORAS as an iterative solver -- and also as a preconditioner -- for nodal finite element Helmholtz systems of any polynomial order. The analysis starts by showing (for general domain decompositions) that ORAS as an unconventional finite element approximation of a classical parallel iterative Schwarz method, formulated at the PDE (non-discrete) level. This non-discrete Schwarz method was recently analysed in [Gong, Gander, Graham, Lafontaine, Spence, arXiv 2106.05218], and the present paper gives a corresponding discrete version of this analysis. In particular, for domain decompositions in strips in 2-d, we show that, when the mesh size is small enough, ORAS inherits the convergence properties of the Schwarz method, independent of polynomial order. The proof relies on characterising the ORAS iteration in terms of discrete `impedance-to-impedance maps', which we prove (via a novel weighted finite-element error analysis) converge as $h\rightarrow 0$ in the operator norm to their non-discrete counterparts.
The Kolmogorov $n$-width of the solution manifolds of transport-dominated problems can decay slowly. As a result, it can be challenging to design efficient and accurate reduced order models (ROMs) for such problems. To address this issue, we propose a new learning-based projection method to construct nonlinear adaptive ROMs for transport problems. The construction follows the offline-online decomposition. In the offline stage, we train a neural network to construct adaptive reduced basis dependent on time and model parameters. In the online stage, we project the solution to the learned reduced manifold. Inheriting the merits from both deep learning and the projection method, the proposed method is more efficient than the conventional linear projection-based methods, and may reduce the generalization error of a solely learning-based ROM. Unlike some learning-based projection methods, the proposed method does not need to take derivatives of the neural network in the online stage.
Bayesian calibration is widely used for inverse analysis and uncertainty analysis for complex systems in the presence of both computer models and observation data. In the present work, we focus on large-scale fluid-structure interaction systems characterized by large structural deformations. Numerical methods to solve these problems, including embedded/immersed boundary methods, are typically not differentiable and lack smoothness. We propose a framework that is built on unscented Kalman filter/inversion to efficiently calibrate and provide uncertainty estimations of such complicated models with noisy observation data. The approach is derivative-free and non-intrusive, and is of particular value for the forward model that is computationally expensive and provided as a black box which is impractical to differentiate. The framework is demonstrated and validated by successfully calibrating the model parameters of a piston problem and identifying the damage field of an airfoil under transonic buffeting.
We propose a $k^{\rm th}$-order unfitted finite element method ($2\le k\le 4$) to solve the moving interface problem of the Oseen equations. Thorough error estimates for the discrete solutions are presented by considering errors from interface-tracking, time integration, and spatial discretization. In literatures on time-dependent Stokes interface problems, error estimates for the discrete pressure are usually sub-optimal, namely, $(k-1)^{\rm th}$-order, under the $L^2$-norm. We have obtained a $(k-1)^{\rm th}$-order error estimate for the discrete pressure under the $H^1$-norm. Numerical experiments for a severely deforming interface show that optimal convergence orders are obtained for $k = 3$ and $4$.
Motivated by the problem of online canonical correlation analysis, we propose the \emph{Stochastic Scaled-Gradient Descent} (SSGD) algorithm for minimizing the expectation of a stochastic function over a generic Riemannian manifold. SSGD generalizes the idea of projected stochastic gradient descent and allows the use of scaled stochastic gradients instead of stochastic gradients. In the special case of a spherical constraint, which arises in generalized eigenvector problems, we establish a nonasymptotic finite-sample bound of $\sqrt{1/T}$, and show that this rate is minimax optimal, up to a polylogarithmic factor of relevant parameters. On the asymptotic side, a novel trajectory-averaging argument allows us to achieve local asymptotic normality with a rate that matches that of Ruppert-Polyak-Juditsky averaging. We bring these ideas together in an application to online canonical correlation analysis, deriving, for the first time in the literature, an optimal one-time-scale algorithm with an explicit rate of local asymptotic convergence to normality. Numerical studies of canonical correlation analysis are also provided for synthetic data.
We study Hibridizable Discontinuous Galerkin (HDG) discretizations for a class of non-linear interior elliptic boundary value problems posed in curved domains where both the source term and the diffusion coefficient are non-linear. We consider the cases where the non-linear diffusion coefficient depends on the solution and on the gradient of the solution. To sidestep the need for curved elements, the discrete solution is computed on a polygonal subdomain that is not assumed to interpolate the true boundary, giving rise to an unfitted computational mesh. We show that, under mild assumptions on the source term and the computational domain, the discrete systems are well posed. Furthermore, we provide a priori error estimates showing that the discrete solution will have optimal order of convergence as long as the distance between the curved boundary and the computational boundary remains of the same order of magnitude as the mesh parameter.
We propose an enriched finite element formulation to address the computational modeling of contact problems and the coupling of non-conforming discretizations in the small deformation setting. The displacement field is augmented by enriched terms that are associated with generalized degrees of freedom collocated along non-conforming interfaces or contact surfaces. The enrichment strategy effectively produces an enriched node-to-node discretization that can be used with any constraint enforcement criterion; this is demonstrated with both multiple-point constraints and Lagrange multipliers, the latter in a generalized Newton implementation where both primal and Lagrange multiplier fields are updated simultaneously. The method's ability to ensure continuity of the displacement field -- without locking -- in mesh coupling problems, and to transfer fairly accurate tractions at contact interfaces -- without the need for contact stabilization -- is demonstrated by means of several examples. In addition, we show that the formulation is stable with respect to the condition number of the stiffness matrix by using a simple Jacobi-like diagonal preconditioner.
Driven by B5G and 6G technologies, multi-network fusion is an indispensable tendency for future communications. In this paper, we focus on and analyze the \emph{security performance} (SP) of the \emph{satellite-terrestrial downlink transmission} (STDT). Here, the STDT is composed of a satellite network and a vehicular network with a legitimate mobile receiver and an mobile eavesdropper distributing. To theoretically analyze the SP of this system from the perspective of mobile terminals better, the random geometry theory is adopted, which assumes that both terrestrial vehicles are distributed stochastically in one beam of the satellite. Furthermore, based on this theory, the closed-form analytical expressions for two crucial and specific indicators in the STDT are derived, respectively, the secrecy outage probability and the ergodic secrecy capacity. Additionally, several related variables restricting the SP of the STDT are discussed, and specific schemes are presented to enhance the SP. Then, the asymptotic property is investigated in the high signal-to-noise ratio scenario, and accurate and asymptotic closed-form expressions are given. Finally, simulation results show that, under the precondition of guaranteeing the reliability of the STDT, the asymptotic solutions outperform the corresponding accurate results significantly in the effectiveness.
This paper explores a family of generalized sweeping preconditionners for Helmholtz problems with non-overlapping checkerboard partition of the computational domain. The domain decomposition procedure relies on high-order transmission conditions and cross-point treatments, which cannot scale without an efficient preconditioning technique when the number of subdomains increases. With the proposed approach, existing sweeping preconditioners, such as the symmetric Gauss-Seidel and parallel double sweep preconditioners, can be applied to checkerboard partitions with different sweeping directions (e.g. horizontal and diagonal). Several directions can be combined thanks to the flexible version of GMRES, allowing for the rapid transfer of information in the different zones of the computational domain, then accelerating the convergence of the final iterative solution procedure. Several two-dimensional finite element results are proposed to study and to compare the sweeping preconditioners, and to illustrate the performance on cases of increasing complexity.
Clocked Cubical Type Theory is a new type theory combining the power of guarded recursion with univalence and higher inductive types (HITs). This type theory can be used as a metalanguage for synthetic guarded domain theory in which one can solve guarded recursive type equations, also with negative variable occurrences, and use these to construct models for reasoning about programming languages. Combining this with HITs allows for the use of type constructors familiar from set-theory based approaches to semantics, such as quotients and finite powersets in these models. In this paper we show how to reason about the combination of finite non-determinism and recursion in this type theory. Unlike traditional domain theory which takes an ordering of programs as primitive, synthetic guarded domain theory takes the notion of computation step as primitive in the form of a modal operator. We use this extra intensional information to define two guarded recursive (finite) powerdomain constructions differing in the way non-determinism interacts with the computation steps. As an example application of these we show how to prove applicative similarity a congruence in the cases of may- and must-convergence for the untyped lambda calculus with finite non-determinism. Such results are usually proved using operational reasoning and Howe's method. Here we use an adaptation of a denotational method developed by Pitts in the context of domain theory.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.