亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine Learning as a Service (MLaaS) is an increasingly popular design where a company with abundant computing resources trains a deep neural network and offers query access for tasks like image classification. The challenge with this design is that MLaaS requires the client to reveal their potentially sensitive queries to the company hosting the model. Multi-party computation (MPC) protects the client's data by allowing encrypted inferences. However, current approaches suffer prohibitively large inference times. The inference time bottleneck in MPC is the evaluation of non-linear layers such as ReLU activation functions. Motivated by the success of previous work co-designing machine learning and MPC aspects, we develop an activation function co-design. We replace all ReLUs with a polynomial approximation and evaluate them with single-round MPC protocols, which give state-of-the-art inference times in wide-area networks. Furthermore, to address the accuracy issues previously encountered with polynomial activations, we propose a novel training algorithm that gives accuracy competitive with plaintext models. Our evaluation shows between $4$ and $90\times$ speedups in inference time on large models with up to $23$ million parameters while maintaining competitive inference accuracy.

相關內容

Machine learning (ML) components are increasingly incorporated into software products, yet developers face challenges in transitioning from ML prototypes to products. Academic researchers struggle to propose solutions to these challenges and evaluate interventions because they often do not have access to close-sourced ML products from industry. In this study, we define and identify open-source ML products, curating a dataset of 262 repositories from GitHub, to facilitate further research and education. As a start, we explore six broad research questions related to different development activities and report 21 findings from a sample of 30 ML products from the dataset. Our findings reveal a variety of development practices and architectural decisions surrounding different types and uses of ML models that offer ample opportunities for future research innovations. We also find very little evidence of industry best practices such as model testing and pipeline automation within the open-source ML products, which leaves room for further investigation to understand its potential impact on the development and eventual end-user experience for the products.

Text Classification is the process of categorizing text into the relevant categories and its algorithms are at the core of many Natural Language Processing (NLP). Term Frequency-Inverse Document Frequency (TF-IDF) and NLP are the most highly used information retrieval methods in text classification. We have investigated and analyzed the feature weighting method for text classification on unstructured data. The proposed model considered two features N-Grams and TF-IDF on the IMDB movie reviews and Amazon Alexa reviews dataset for sentiment analysis. Then we have used the state-of-the-art classifier to validate the method i.e., Support Vector Machine (SVM), Logistic Regression, Multinomial Naive Bayes (Multinomial NB), Random Forest, Decision Tree, and k-nearest neighbors (KNN). From those two feature extractions, a significant increase in feature extraction with TF-IDF features rather than based on N-Gram. TF-IDF got the maximum accuracy (93.81%), precision (94.20%), recall (93.81%), and F1-score (91.99%) value in Random Forest classifier.

Digital soil mapping (DSM) is an advanced approach that integrates statistical modeling and cutting-edge technologies, including machine learning (ML) methods, to accurately depict soil properties and their spatial distribution. Soil organic carbon (SOC) is a crucial soil attribute providing valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. This study highlights the significance of spatial-temporal deep learning (DL) techniques within the DSM framework. A novel architecture is proposed, incorporating spatial information using a base convolutional neural network (CNN) model and spatial attention mechanism, along with climate temporal information using a long short-term memory (LSTM) network, for SOC prediction across Europe. The model utilizes a comprehensive set of environmental features, including Landsat-8 images, topography, remote sensing indices, and climate time series, as input features. Results demonstrate that the proposed framework outperforms conventional ML approaches like random forest commonly used in DSM, yielding lower root mean square error (RMSE). This model is a robust tool for predicting SOC and could be applied to other soil properties, thereby contributing to the advancement of DSM techniques and facilitating land management and decision-making processes based on accurate information.

Probabilistic model checking is a technique for formal automated reasoning about software or hardware systems that operate in the context of uncertainty or stochasticity. It builds upon ideas and techniques from a diverse range of fields, from logic, automata and graph theory, to optimisation, numerical methods and control. In recent years, probabilistic model checking has also been extended to integrate ideas from game theory, notably using models such as stochastic games and solution concepts such as equilibria, to formally verify the interaction of multiple rational agents with distinct objectives. This provides a means to reason flexibly about agents acting in either an adversarial or a collaborative fashion, and opens up opportunities to tackle new problems within, for example, artificial intelligence, robotics and autonomous systems. In this paper, we summarise some of the advances in this area, and highlight applications for which they have already been used. We discuss how the strengths of probabilistic model checking apply, or have the potential to apply, to the multi-agent setting and outline some of the key challenges required to make further progress in this field.

Knowledge Distillation (KD) is a widely-used technology to inherit information from cumbersome teacher models to compact student models, consequently realizing model compression and acceleration. Compared with image classification, object detection is a more complex task, and designing specific KD methods for object detection is non-trivial. In this work, we elaborately study the behaviour difference between the teacher and student detection models, and obtain two intriguing observations: First, the teacher and student rank their detected candidate boxes quite differently, which results in their precision discrepancy. Second, there is a considerable gap between the feature response differences and prediction differences between teacher and student, indicating that equally imitating all the feature maps of the teacher is the sub-optimal choice for improving the student's accuracy. Based on the two observations, we propose Rank Mimicking (RM) and Prediction-guided Feature Imitation (PFI) for distilling one-stage detectors, respectively. RM takes the rank of candidate boxes from teachers as a new form of knowledge to distill, which consistently outperforms the traditional soft label distillation. PFI attempts to correlate feature differences with prediction differences, making feature imitation directly help to improve the student's accuracy. On MS COCO and PASCAL VOC benchmarks, extensive experiments are conducted on various detectors with different backbones to validate the effectiveness of our method. Specifically, RetinaNet with ResNet50 achieves 40.4% mAP in MS COCO, which is 3.5% higher than its baseline, and also outperforms previous KD methods.

Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.

Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

Verifiability is one of the core editing principles in Wikipedia, where editors are encouraged to provide citations for the added statements. Statements can be any arbitrary piece of text, ranging from a sentence up to a paragraph. However, in many cases, citations are either outdated, missing, or link to non-existing references (e.g. dead URL, moved content etc.). In total, 20\% of the cases such citations refer to news articles and represent the second most cited source. Even in cases where citations are provided, there are no explicit indicators for the span of a citation for a given piece of text. In addition to issues related with the verifiability principle, many Wikipedia entity pages are incomplete, with relevant information that is already available in online news sources missing. Even for the already existing citations, there is often a delay between the news publication time and the reference time. In this thesis, we address the aforementioned issues and propose automated approaches that enforce the verifiability principle in Wikipedia, and suggest relevant and missing news references for further enriching Wikipedia entity pages.

北京阿比特科技有限公司