亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Integration of technological solutions aims to improve accuracy, precision and repeatability in farming operations, and biosensor devices are increasingly used for understanding basic biology during livestock production. The aim of this study was to design and validate a miniaturized tri-axial accelerometer for non-invasive monitoring of farmed fish with re-programmable schedule protocols.The device was attached to the operculum of gilthead sea bream and European sea bass juveniles for monitoring their physical activity by measurements of movement accelerations in x and y-axes, while records of operculum beats served as a measurement of respiratory frequency. Data post-processing of exercised fish in swimming test chambers revealed an exponential increase of fish accelerations with the increase of fish speed from 1 body-length to 4 body-lengths per second, while a close relationship between oxygen consumption and opercular frequency was consistently found.The usefulness of low computational load for data pre-processing with on-board algorithms was verified from low to submaximal exercise, increasing this procedure the autonomy of the system up to 6 h of data recording with different programmable schedules. Visual observations regarding tissue damage, feeding behavior and circulating levels of stress markers did not reveal at short term a negative impact of device tagging. Reduced plasma levels of triglycerides revealed a transient inhibition of feed intake in small fish, but this disturbance was not detected in larger fish. All this considered together is the proof of concept that miniaturized devices are suitable for non-invasive and reliable metabolic phenotyping of farmed fish to improve their overall performance and welfare. Further work is underway for improving the attachment procedure and the full device packaging.

相關內容

In the era of Internet of Things, how to develop a smart sensor system with sustainable power supply, easy deployment and flexible use has become a difficult problem to be solved. The traditional power supply has problems such as frequent replacement or charging when in use, which limits the development of wearable devices. The contact-to-separate friction nanogenerator (TENG) was prepared by using polychotomy thy lene (PTFE) and aluminum (AI) foils. Human motion energy was collected by human body arrangement, and human motion posture was monitored according to the changes of output electrical signals. In 2012, Academician Wang Zhong lin and his team invented the triboelectric nanogenerator (TENG), which uses Maxwell displacement current as a driving force to directly convert mechanical stimuli into electrical signals, so it can be used as a self-driven sensor. Teng-based sensors have the advantages of simple structure and high instantaneous power density, which provides an important means for building intelligent sensor systems. At the same time, machine learning, as a technology with low cost, short development cycle, strong data processing ability and prediction ability, has a significant effect on the processing of a large number of electrical signals generated by TENG, and the combination with TENG sensors will promote the rapid development of intelligent sensor networks in the future. Therefore, this paper is based on the intelligent sound monitoring and recognition system of TENG, which has good sound recognition capability, and aims to evaluate the feasibility of the sound perception module architecture in ubiquitous sensor networks.

Most businesses impose a supervisory hierarchy on employees to facilitate management, decision-making, and collaboration, yet routine inter-employee communication patterns within workplaces tend to emerge more naturally as a consequence of both supervisory relationships and the needs of the organization. What then is the relationship between a formal organizational structure and the emergent communications between its employees? Understanding the nature of this relationship is critical for the successful management of an organization. While scholars of organizational management have proposed theories relating organizational trees to communication dynamics, and separately, network scientists have studied the topological structure of communication patterns in different types of organizations, existing empirical analyses are both lacking in representativeness and limited in size. In fact, much of the methodology used to study the relationship between organizational hierarchy and communication patterns comes from analyses of the Enron email corpus, reflecting a uniquely dysfunctional corporate environment. In this paper, we develop new methodology for assessing the relationship between organizational hierarchy and communication dynamics and apply it to Microsoft Corporation, currently the highest valued company in the world, consisting of approximately 200,000 employees divided into 88 teams. This reveals distinct communication network structures within and between teams. We then characterize the relationship of routine employee communication patterns to these team supervisory hierarchies, while empirically evaluating several theories of organizational management and performance. To do so, we propose new measures of communication reciprocity and new shortest-path distances for trees to track the frequency of messages passed up, down, and across the organizational hierarchy.

In the present study, the efficiency of preconditioners for solving linear systems associated with the discretized variable-density incompressible Navier-Stokes equations with semiimplicit second-order accuracy in time and spectral accuracy in space is investigated. The method, in which the inverse operator for the constant-density flow system acts as preconditioner, is implemented for three iterative solvers: the General Minimal Residual, the Conjugate Gradient and the Richardson Minimal Residual. We discuss the method, first, in the context of the one-dimensional flow case where a top-hat like profile for the density is used. Numerical evidence shows that the convergence is significantly improved due to the notable decrease in the condition number of the operators. Most importantly, we then validate the robustness and convergence properties of the method on two more realistic problems: the two-dimensional Rayleigh-Taylor instability problem and the three-dimensional variable-density swirling jet.

Charts, figures, and text derived from data play an important role in decision making, from data-driven policy development to day-to-day choices informed by online articles. Making sense of, or fact-checking, outputs means understanding how they relate to the underlying data. Even for domain experts with access to the source code and data sets, this poses a significant challenge. In this paper we introduce a new program analysis framework which supports interactive exploration of fine-grained I/O relationships directly through computed outputs, making use of dynamic dependence graphs. Our main contribution is a novel notion in data provenance which we call related inputs, a relation of mutual relevance or "cognacy" which arises between inputs when they contribute to common features of the output. Queries of this form allow readers to ask questions like "What outputs use this data element, and what other data elements are used along with it?". We show how Jonsson and Tarski's concept of conjugate operators on Boolean algebras appropriately characterises the notion of cognacy in a dependence graph, and give a procedure for computing related inputs over such a graph.

We present a data-driven control architecture for modifying the kinematics of robots and artificial avatars to encode specific information such as the presence or not of an emotion in the movements of an avatar or robot driven by a human operator. We validate our approach on an experimental dataset obtained during the reach-to-grasp phase of a pick-and-place task.

Electrical circuits are present in a variety of technologies, making their design an important part of computer aided engineering. The growing number of parameters that affect the final design leads to a need for new approaches to quantify their impact. Machine learning may play a key role in this regard, however current approaches often make suboptimal use of existing knowledge about the system at hand. In terms of circuits, their description via modified nodal analysis is well-understood. This particular formulation leads to systems of differential-algebraic equations (DAEs) which bring with them a number of peculiarities, e.g. hidden constraints that the solution needs to fulfill. We use the recently introduced dissection index that can decouple a given system of DAEs into ordinary differential equations, only depending on differential variables, and purely algebraic equations, that describe the relations between differential and algebraic variables. The idea is to then only learn the differential variables and reconstruct the algebraic ones using the relations from the decoupling. This approach guarantees that the algebraic constraints are fulfilled up to the accuracy of the nonlinear system solver, and it may also reduce the learning effort as only the differential variables need to be learned.

Varimax factor rotations, while popular among practitioners in psychology and statistics since being introduced by H. Kaiser, have historically been viewed with skepticism and suspicion by some theoreticians and mathematical statisticians. Now, work by K. Rohe and M. Zeng provides new, fundamental insight: varimax rotations provably perform statistical estimation in certain classes of latent variable models when paired with spectral-based matrix truncations for dimensionality reduction. We build on this newfound understanding of varimax rotations by developing further connections to network analysis and spectral methods rooted in entrywise matrix perturbation analysis. Concretely, this paper establishes the asymptotic multivariate normality of vectors in varimax-transformed Euclidean point clouds that represent low-dimensional node embeddings in certain latent space random graph models. We address related concepts including network sparsity, data denoising, and the role of matrix rank in latent variable parameterizations. Collectively, these findings, at the confluence of classical and contemporary multivariate analysis, reinforce methodology and inference procedures grounded in matrix factorization-based techniques. Numerical examples illustrate our findings and supplement our discussion.

Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司