亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose an approach based on machine learning to solve two-stage linear adaptive robust optimization (ARO) problems with binary here-and-now variables and polyhedral uncertainty sets. We encode the optimal here-and-now decisions, the worst-case scenarios associated with the optimal here-and-now decisions, and the optimal wait-and-see decisions into what we denote as the strategy. We solve multiple similar ARO instances in advance using the column and constraint generation algorithm and extract the optimal strategies to generate a training set. We train a machine learning model that predicts high-quality strategies for the here-and-now decisions, the worst-case scenarios associated with the optimal here-and-now decisions, and the wait-and-see decisions. We also introduce an algorithm to reduce the number of different target classes the machine learning algorithm needs to be trained on. We apply the proposed approach to the facility location, the multi-item inventory control and the unit commitment problems. Our approach solves ARO problems drastically faster than the state-of-the-art algorithms with high accuracy.

相關內容

We propose a threshold decision-making framework for controlling the physical dynamics of an agent switching between two spatial tasks. Our framework couples a nonlinear opinion dynamics model that represents the evolution of an agent's preference for a particular task with the physical dynamics of the agent. We prove the bifurcation that governs the behavior of the coupled dynamics. We show by means of the bifurcation behavior how the coupled dynamics are adaptive to the physical constraints of the agent. We also show how the bifurcation can be modulated to allow the agent to switch tasks based on thresholds adaptive to environmental conditions. We illustrate the benefits of the approach through a decentralized multi-robot task allocation application for trash collection.

We propose a trust-region stochastic sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with stochastic objectives and deterministic equality constraints. We consider a fully stochastic setting, where at each step a single sample is generated to estimate the objective gradient. The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices (i.e., Hessians without modification) in SQP subproblems. As a trust-region method for constrained optimization, our algorithm must address an infeasibility issue -- the linearized equality constraints and trust-region constraints may lead to infeasible SQP subproblems. In this regard, we propose an adaptive relaxation technique to compute the trial step, consisting of a normal step and a tangential step. To control the lengths of these two steps while ensuring a scale-invariant property, we adaptively decompose the trust-region radius into two segments, based on the proportions of the rescaled feasibility and optimality residuals to the rescaled full KKT residual. The normal step has a closed form, while the tangential step is obtained by solving a trust-region subproblem, to which a solution ensuring the Cauchy reduction is sufficient for our study. We establish a global almost sure convergence guarantee for TR-StoSQP, and illustrate its empirical performance on both a subset of problems in the CUTEst test set and constrained logistic regression problems using data from the LIBSVM collection.

We explore a novel methodology for constructing confidence regions for parameters of linear models, using predictions from any arbitrary predictor. Our framework requires minimal assumptions on the noise and can be extended to functions deviating from strict linearity up to some adjustable threshold, thereby accommodating a comprehensive and pragmatically relevant set of functions. The derived confidence regions can be cast as constraints within a Mixed Integer Linear Programming framework, enabling optimisation of linear objectives. This representation enables robust optimization and the extraction of confidence intervals for specific parameter coordinates. Unlike previous methods, the confidence region can be empty, which can be used for hypothesis testing. Finally, we validate the empirical applicability of our method on synthetic data.

We study different notions of pointwise redundancy in variable-length lossy source coding. We present a construction of one-shot variable-length lossy source coding schemes using the Poisson functional representation, and give bounds on its pointwise redundancy for various definitions of pointwise redundancy. This allows us to describe the distribution of the encoding length in a precise manner. We also generalize the result to the one-shot lossy Gray-Wyner system.

The recent introduction of the Least-Squares Support Vector Regression (LS-SVR) algorithm for solving differential and integral equations has sparked interest. In this study, we expand the application of this algorithm to address systems of differential-algebraic equations (DAEs). Our work presents a novel approach to solving general DAEs in an operator format by establishing connections between the LS-SVR machine learning model, weighted residual methods, and Legendre orthogonal polynomials. To assess the effectiveness of our proposed method, we conduct simulations involving various DAE scenarios, such as nonlinear systems, fractional-order derivatives, integro-differential, and partial DAEs. Finally, we carry out comparisons between our proposed method and currently established state-of-the-art approaches, demonstrating its reliability and effectiveness.

Many stochastic continuous-state dynamical systems can be modeled as probabilistic programs with nonlinear non-polynomial updates in non-nested loops. We present two methods, one approximate and one exact, to automatically compute, without sampling, moment-based invariants for such probabilistic programs as closed-form solutions parameterized by the loop iteration. The exact method applies to probabilistic programs with trigonometric and exponential updates and is embedded in the Polar tool. The approximate method for moment computation applies to any nonlinear random function as it exploits the theory of polynomial chaos expansion to approximate non-polynomial updates as the sum of orthogonal polynomials. This translates the dynamical system to a non-nested loop with polynomial updates, and thus renders it conformable with the Polar tool that computes the moments of any order of the state variables. We evaluate our methods on an extensive number of examples ranging from modeling monetary policy to several physical motion systems in uncertain environments. The experimental results demonstrate the advantages of our approach with respect to the current state-of-the-art.

We propose a logic-informed knowledge-driven modeling framework for human movements by analyzing their trajectories. Our approach is inspired by the fact that human actions are usually driven by their intentions or desires, and are influenced by environmental factors such as the spatial relationships with surrounding objects. In this paper, we introduce a set of spatial-temporal logic rules as knowledge to explain human actions. These rules will be automatically discovered from observational data. To learn the model parameters and the rule content, we design an expectation-maximization (EM) algorithm, which treats the rule content as latent variables. The EM algorithm alternates between the E-step and M-step: in the E-step, the posterior distribution over the latent rule content is evaluated; in the M-step, the rule generator and model parameters are jointly optimized by maximizing the current expected log-likelihood. Our model may have a wide range of applications in areas such as sports analytics, robotics, and autonomous cars, where understanding human movements are essential. We demonstrate the model's superior interpretability and prediction performance on pedestrian and NBA basketball player datasets, both achieving promising results.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司