亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite advancements in text-to-image generation (T2I), prior methods often face text-image misalignment problems such as relation confusion in generated images. Existing solutions involve cross-attention manipulation for better compositional understanding or integrating large language models for improved layout planning. However, the inherent alignment capabilities of T2I models are still inadequate. By reviewing the link between generative and discriminative modeling, we posit that T2I models' discriminative abilities may reflect their text-image alignment proficiency during generation. In this light, we advocate bolstering the discriminative abilities of T2I models to achieve more precise text-to-image alignment for generation. We present a discriminative adapter built on T2I models to probe their discriminative abilities on two representative tasks and leverage discriminative fine-tuning to improve their text-image alignment. As a bonus of the discriminative adapter, a self-correction mechanism can leverage discriminative gradients to better align generated images to text prompts during inference. Comprehensive evaluations across three benchmark datasets, including both in-distribution and out-of-distribution scenarios, demonstrate our method's superior generation performance. Meanwhile, it achieves state-of-the-art discriminative performance on the two discriminative tasks compared to other generative models.

相關內容

Vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream tasks such as zero-shot image classification, image-text retrieval, and text-to-image generation. However, the compositional reasoning abilities of existing VLMs remains subpar. The root of this limitation lies in the inadequate alignment between the images and captions in the pretraining datasets. Additionally, the current contrastive learning objective fails to focus on fine-grained grounding components like relations, actions, and attributes, resulting in "bag-of-words" representations. We introduce a simple and effective method to improve compositional reasoning in VLMs. Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework. Our approach does not require specific annotations and does not incur extra parameters. When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines across five vision-language compositional benchmarks. We open-source our code at //github.com/lezhang7/Enhance-FineGrained.

Face Recognition (FR) systems can be easily deceived by adversarial examples that manipulate benign face images through imperceptible perturbations. Adversarial attacks on FR encompass two types: impersonation (targeted) attacks and dodging (untargeted) attacks. Previous methods often achieve a successful impersonation attack on FR; However, it does not necessarily guarantee a successful dodging attack on FR in the black-box setting. In this paper, our key insight is that the generation of adversarial examples should perform both impersonation and dodging attacks simultaneously. To this end, we propose a novel attack method termed as Adversarial Pruning (Adv-Pruning), to fine-tune existing adversarial examples to enhance their dodging capabilities while preserving their impersonation capabilities. Adv-Pruning consists of Priming, Pruning, and Restoration stages. Concretely, we propose Adversarial Priority Quantification to measure the region-wise priority of original adversarial perturbations, identifying and releasing those with minimal impact on absolute model output variances. Then, Biased Gradient Adaptation is presented to adapt the adversarial examples to traverse the decision boundaries of both the attacker and victim by adding perturbations favoring dodging attacks on the vacated regions, preserving the prioritized features of the original perturbations while boosting dodging performance. As a result, we can maintain the impersonation capabilities of original adversarial examples while effectively enhancing dodging capabilities. Comprehensive experiments demonstrate the superiority of our method compared with state-of-the-art adversarial attacks.

Despite their remarkable successes, state-of-the-art language models face challenges in grasping certain important semantic details. This paper introduces the VISLA (Variance and Invariance to Semantic and Lexical Alterations) benchmark, designed to evaluate the semantic and lexical understanding of language models. VISLA presents a 3-way semantic (in)equivalence task with a triplet of sentences associated with an image, to evaluate both vision-language models (VLMs) and unimodal language models (ULMs). An evaluation involving 34 VLMs and 20 ULMs reveals surprising difficulties in distinguishing between lexical and semantic variations. Spatial semantics encoded by language models also appear to be highly sensitive to lexical information. Notably, text encoders of VLMs demonstrate greater sensitivity to semantic and lexical variations than unimodal text encoders. Our contributions include the unification of image-to-text and text-to-text retrieval tasks, an off-the-shelf evaluation without fine-tuning, and assessing LMs' semantic (in)variance in the presence of lexical alterations. The results highlight strengths and weaknesses across diverse vision and unimodal language models, contributing to a deeper understanding of their capabilities. % VISLA enables a rigorous evaluation, shedding light on language models' capabilities in handling semantic and lexical nuances. Data and code will be made available at //github.com/Sri-Harsha/visla_benchmark.

HTTP/3 marks a significant advancement in protocol development, utilizing QUIC as its underlying transport layer to exploit multiplexing capabilities and minimize head-of-line blocking. The introduction of the Extensible Prioritization Scheme (EPS) offers a signaling mechanism for controlling the order of resource delivery. In this study, we propose mappings from Chromium priority hints to EPS urgency levels with the goal of enhancing the key web performance metrics. The mappings are evaluated using EPS's urgency-based, non-incremental resource delivery method. The results of the experimental evaluation show that the proposed mappings improve the Quality of Experience metrics across a range of websites.

A pressing issue in the adoption of AI models is the increasing demand for more human-centric explanations of their predictions. To advance towards more human-centric explanations, understanding how humans produce and select explanations has been beneficial. In this work, inspired by insights of human cognition we propose and test the incorporation of two novel biases to enhance the search for effective counterfactual explanations. Central to our methodology is the application of diffusion distance, which emphasizes data connectivity and actionability in the search for feasible counterfactual explanations. In particular, diffusion distance effectively weights more those points that are more interconnected by numerous short-length paths. This approach brings closely connected points nearer to each other, identifying a feasible path between them. We also introduce a directional coherence term that allows the expression of a preference for the alignment between the joint and marginal directional changes in feature space to reach a counterfactual. This term enables the generation of counterfactual explanations that align with a set of marginal predictions based on expectations of how the outcome of the model varies by changing one feature at a time. We evaluate our method, named Coherent Directional Counterfactual Explainer (CoDiCE), and the impact of the two novel biases against existing methods such as DiCE, FACE, Prototypes, and Growing Spheres. Through a series of ablation experiments on both synthetic and real datasets with continuous and mixed-type features, we demonstrate the effectiveness of our method.

Event cameras are bio-inspired, motion-activated sensors that demonstrate substantial potential in handling challenging situations, such as motion blur and high-dynamic range. In this paper, we proposed EVI-SAM to tackle the problem of 6 DoF pose tracking and 3D reconstruction using monocular event camera. A novel event-based hybrid tracking framework is designed to estimate the pose, leveraging the robustness of feature matching and the precision of direct alignment. Specifically, we develop an event-based 2D-2D alignment to construct the photometric constraint, and tightly integrate it with the event-based reprojection constraint. The mapping module recovers the dense and colorful depth of the scene through the image-guided event-based mapping method. Subsequently, the appearance, texture, and surface mesh of the 3D scene can be reconstructed by fusing the dense depth map from multiple viewpoints using truncated signed distance function (TSDF) fusion. To the best of our knowledge, this is the first non-learning work to realize event-based dense mapping. Numerical evaluations are performed on both publicly available and self-collected datasets, which qualitatively and quantitatively demonstrate the superior performance of our method. Our EVI-SAM effectively balances accuracy and robustness while maintaining computational efficiency, showcasing superior pose tracking and dense mapping performance in challenging scenarios. Video Demo: //youtu.be/Nn40U4e5Si8.

Regional planning processes and associated redevelopment projects can be complex due to the vast amount of diverse data involved. However, all of this data shares a common geographical reference, especially in the renaturation of former open-cast mining areas. To ensure safety, it is crucial to maintain a comprehensive overview of the interrelated data and draw accurate conclusions. This requires special tools and can be a very time-consuming process. A geographical information system (GIS) is well-suited for this purpose, but even a GIS has limitations when dealing with multiple data types and sources. Additional tools are often necessary to process and view all the data, which can complicate the planning process. Our paper describes a system architecture that addresses the aforementioned issues and provides a simple, yet flexible tool for these activities. The architecture is based on microservices using Docker and is divided into a backend and a frontend. The backend simplifies and generalizes the integration of different data types, while a graph database is used to link relevant data and reveal potential new relationships between them. Finally, a modern web frontend displays the data and relationships.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司