Collecting data on underground criminal communities is highly valuable both for security research and security operations. Unfortunately these communities live within a constellation of diverse online forums that are difficult to infiltrate, may adopt crawling monitoring countermeasures, and require the development of ad-hoc scrapers for each different community, making the endeavour increasingly technically challenging, and potentially expensive. To address this problem we propose THREAT/crawl, a method and prototype tool for a highly reusable crawler that can learn a wide range of (arbitrary) forum structures, can remain under-the-radar during the crawling activity and can be extended and configured at the user will. We showcase THREAT/crawl capabilities and provide prime evaluation of our prototype against a range of active, live, underground communities.
More than one hundred benchmarks have been developed to test the commonsense knowledge and commonsense reasoning abilities of artificial intelligence (AI) systems. However, these benchmarks are often flawed and many aspects of common sense remain untested. Consequently, we do not currently have any reliable way of measuring to what extent existing AI systems have achieved these abilities. This paper surveys the development and uses of AI commonsense benchmarks. We discuss the nature of common sense; the role of common sense in AI; the goals served by constructing commonsense benchmarks; and desirable features of commonsense benchmarks. We analyze the common flaws in benchmarks, and we argue that it is worthwhile to invest the work needed ensure that benchmark examples are consistently high quality. We survey the various methods of constructing commonsense benchmarks. We enumerate 139 commonsense benchmarks that have been developed: 102 text-based, 18 image-based, 12 video based, and 7 simulated physical environments. We discuss the gaps in the existing benchmarks and aspects of commonsense reasoning that are not addressed in any existing benchmark. We conclude with a number of recommendations for future development of commonsense AI benchmarks.
Local governments increasingly use artificial intelligence (AI) for automated decision-making. Contestability, making systems responsive to dispute, is a way to ensure they respect human rights to autonomy and dignity. We investigate the design of public urban AI systems for contestability through the example of camera cars: human-driven vehicles equipped with image sensors. Applying a provisional framework for contestable AI, we use speculative design to create a concept video of a contestable camera car. Using this concept video, we then conduct semi-structured interviews with 17 civil servants who work with AI employed by a large northwestern European city. The resulting data is analyzed using reflexive thematic analysis to identify the main challenges facing the implementation of contestability in public AI. We describe how civic participation faces issues of representation, public AI systems should integrate with existing democratic practices, and cities must expand capacities for responsible AI development and operation.
Machine learning systems have been extensively used as auxiliary tools in domains that require critical decision-making, such as healthcare and criminal justice. The explainability of decisions is crucial for users to develop trust on these systems. In recent years, the globally-consistent rule-based summary-explanation and its max-support (MS) problem have been proposed, which can provide explanations for particular decisions along with useful statistics of the dataset. However, globally-consistent summary-explanations with limited complexity typically have small supports, if there are any. In this paper, we propose a relaxed version of summary-explanation, i.e., the $q$-consistent summary-explanation, which aims to achieve greater support at the cost of slightly lower consistency. The challenge is that the max-support problem of $q$-consistent summary-explanation (MSqC) is much more complex than the original MS problem, resulting in over-extended solution time using standard branch-and-bound solvers. To improve the solution time efficiency, this paper proposes the weighted column sampling~(WCS) method based on solving smaller problems by sampling variables according to their simplified increase support (SIS) values. Experiments verify that solving MSqC with the proposed SIS-based WCS method is not only more scalable in efficiency, but also yields solutions with greater support and better global extrapolation effectiveness.
Minimax optimization has seen a surge in interest with the advent of modern applications such as GANs, and it is inherently more challenging than simple minimization. The difficulty is exacerbated by the training data residing at multiple edge devices or \textit{clients}, especially when these clients can have heterogeneous datasets and local computation capabilities. We propose a general federated minimax optimization framework that subsumes such settings and several existing methods like Local SGDA. We show that naive aggregation of heterogeneous local progress results in optimizing a mismatched objective function -- a phenomenon previously observed in standard federated minimization. To fix this problem, we propose normalizing the client updates by the number of local steps undertaken between successive communication rounds. We analyze the convergence of the proposed algorithm for classes of nonconvex-concave and nonconvex-nonconcave functions and characterize the impact of heterogeneous client data, partial client participation, and heterogeneous local computations. Our analysis works under more general assumptions on the intra-client noise and inter-client heterogeneity than so far considered in the literature. For all the function classes considered, we significantly improve the existing computation and communication complexity results. Experimental results support our theoretical claims.
Robotic automation in life science research is a paradigm that has gained increasing relevance in recent years. Current solutions in this area often have limited scope, such as pick-and-place tasks for a specific object. Thus, each new process requires a separate toolset, which prevents the realization of more complex workflows and reduces the acceptance of robotic automation tools. Here, we present a novel finger system for a parallel gripper for biolaboratory automation that can handle a wide range of liquid containers. This flexibility is enabled by developing the fingers as a dual-extrusion 3D print. The coating with a soft material from the second extruder in one seamless print and the fingertip design are key features to enhance grasping capabilities. By employing a passive compliant mechanism that was previously presented in a finger called ``PaCoMe'', a simple actuation system and a low weight are maintained. The ability to resist chemicals and high temperatures and the integration with a tool exchange system make the fingers usable for daily laboratory use and complex workflows. We present their task suitability in several experiments showing the wide range of vessels that can be handled as well as their tolerance against displacements and grasp stability.
Object detectors often experience a drop in performance when new environmental conditions are insufficiently represented in the training data. This paper studies how to automatically fine-tune a pre-existing object detector while exploring and acquiring images in a new environment without relying on human intervention, i.e., in an utterly self-supervised fashion. In our setting, an agent initially learns to explore the environment using a pre-trained off-the-shelf detector to locate objects and associate pseudo-labels. By assuming that pseudo-labels for the same object must be consistent across different views, we learn an exploration policy mining hard samples and we devise a novel mechanism for producing refined predictions from the consensus among observations. Our approach outperforms the current state-of-the-art, and it closes the performance gap against a fully supervised setting without relying on ground-truth annotations. We also compare various exploration policies for the agent to gather more informative observations. Code and dataset will be made available upon paper acceptance
Federated learning methods, that is, methods that perform model training using data situated across different sources, whilst simultaneously not having the data leave their original source, are of increasing interest in a number of fields. However, despite this interest, the classes of models for which easily-applicable and sufficiently general approaches are available is limited, excluding many structured probabilistic models. We present a general yet elegant resolution to the aforementioned issue. The approach is based on adopting structured variational inference, an approach widely used in Bayesian machine learning, to the federated setting. Additionally, a communication-efficient variant analogous to the canonical FedAvg algorithm is explored. The effectiveness of the proposed algorithms are demonstrated, and their performance is compared on Bayesian multinomial regression, topic modelling, and mixed model examples.
Recently, short video platforms have achieved rapid user growth by recommending interesting content to users. The objective of the recommendation is to optimize user retention, thereby driving the growth of DAU (Daily Active Users). Retention is a long-term feedback after multiple interactions of users and the system, and it is hard to decompose retention reward to each item or a list of items. Thus traditional point-wise and list-wise models are not able to optimize retention. In this paper, we choose reinforcement learning methods to optimize the retention as they are designed to maximize the long-term performance. We formulate the problem as an infinite-horizon request-based Markov Decision Process, and our objective is to minimize the accumulated time interval of multiple sessions, which is equal to improving the app open frequency and user retention. However, current reinforcement learning algorithms can not be directly applied in this setting due to uncertainty, bias, and long delay time incurred by the properties of user retention. We propose a novel method, dubbed RLUR, to address the aforementioned challenges. Both offline and live experiments show that RLUR can significantly improve user retention. RLUR has been fully launched in Kuaishou app for a long time, and achieves consistent performance improvement on user retention and DAU.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.