亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Integrated data and energy transfer (IDET) has been of fundamental importance for providing both wireless data transfer (WDT) and wireless energy transfer (WET) services towards low-power devices. Fluid antenna (FA) is capable of exploiting the huge spatial diversity of the wireless channel to enhance the receive signal strength, which is more suitable for the tiny-size low-power devices having the IDET requirements. In this letter, a multiuser FA assisted IDET system is studied and the weighted energy harvesting power at energy receivers (ERs) is maximized by jointly optimizing the port selection and transmit beamforming design under imperfect channel state information (CSI), while the signal-to-interference-plus-noise ratio (SINR) constraint for each data receiver (DR) is satisfied. An efficient algorithm is proposed to obtain the suboptimal solutions for the non-convex problem. Simulation results evaluate the performance of the FA-IDET system, while also demonstrate that FA outperforms the multi-input-multi-output (MIMO) counterpart in terms of the IDET performance, as long as the port number is large enough.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜(za)志(zhi)。 Publisher:Elsevier。 SIT:

We develop a conformal inference method to construct joint confidence regions for structured groups of missing entries within a sparsely observed matrix. This method is useful to provide reliable uncertainty estimation for group-level collaborative filtering; for example, it can be applied to help suggest a movie for a group of friends to watch together. Unlike standard conformal techniques, which make inferences for one individual at a time, our method achieves stronger group-level guarantees by carefully assembling a structured calibration data set mimicking the patterns expected among the test group of interest. We propose a generalized weighted conformalization framework to deal with the lack of exchangeability arising from such structured calibration, and in this process we introduce several innovations to overcome computational challenges. The practicality and effectiveness of our method are demonstrated through extensive numerical experiments and an analysis of the MovieLens 100K data set.

Generative Adversarial Network (GAN) based vocoders are superior in both inference speed and synthesis quality when reconstructing an audible waveform from an acoustic representation. This study focuses on improving the discriminator for GAN-based vocoders. Most existing Time-Frequency Representation (TFR)-based discriminators are rooted in Short-Time Fourier Transform (STFT), which owns a constant Time-Frequency (TF) resolution, linearly scaled center frequencies, and a fixed decomposition basis, making it incompatible with signals like singing voices that require dynamic attention for different frequency bands and different time intervals. Motivated by that, we propose a Multi-Scale Sub-Band Constant-Q Transform CQT (MS-SB-CQT) discriminator and a Multi-Scale Temporal-Compressed Continuous Wavelet Transform CWT (MS-TC-CWT) discriminator. Both CQT and CWT have a dynamic TF resolution for different frequency bands. In contrast, CQT has a better modeling ability in pitch information, and CWT has a better modeling ability in short-time transients. Experiments conducted on both speech and singing voices confirm the effectiveness of our proposed discriminators. Moreover, the STFT, CQT, and CWT-based discriminators can be used jointly for better performance. The proposed discriminators can boost the synthesis quality of various state-of-the-art GAN-based vocoders, including HiFi-GAN, BigVGAN, and APNet.

Recently, tensor low-rank representation (TLRR) has become a popular tool for tensor data recovery and clustering, due to its empirical success and theoretical guarantees. However, existing TLRR methods consider Gaussian or gross sparse noise, inevitably leading to performance degradation when the tensor data are contaminated by outliers or sample-specific corruptions. This paper develops an outlier-robust tensor low-rank representation (OR-TLRR) method that provides outlier detection and tensor data clustering simultaneously based on the t-SVD framework. For tensor observations with arbitrary outlier corruptions, OR-TLRR has provable performance guarantee for exactly recovering the row space of clean data and detecting outliers under mild conditions. Moreover, an extension of OR-TLRR is proposed to handle the case when parts of the data are missing. Finally, extensive experimental results on synthetic and real data demonstrate the effectiveness of the proposed algorithms. We release our code at //github.com/twugithub/2024-AISTATS-ORTLRR.

Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.

We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silo's vertical data shard partitioned horizontally across its clients. We propose Tiered Decentralized Coordinate Descent (TDCD), a communication-efficient decentralized training algorithm for such two-tiered networks. The clients in each silo perform multiple local gradient steps before sharing updates with their hub to reduce communication overhead. Each hub adjusts its coordinates by averaging its workers' updates, and then hubs exchange intermediate updates with one another. We present a theoretical analysis of our algorithm and show the dependence of the convergence rate on the number of vertical partitions and the number of local updates. We further validate our approach empirically via simulation-based experiments using a variety of datasets and objectives.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司