亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

2D texture maps and 3D voxel arrays are widely used to add rich detail to the surfaces and volumes of rendered scenes, and filtered texture lookups are integral to producing high-quality imagery. We show that filtering textures after evaluating lighting, rather than before BSDF evaluation as is current practice, gives a more accurate solution to the rendering equation. These benefits are not merely theoretical, but are apparent in common cases. We further show that stochastically sampling texture filters is crucial for enabling this approach, which has not been possible previously except in limited cases. Stochastic texture filtering offers additional benefits, including efficient implementation of high-quality texture filters and efficient filtering of textures stored in compressed and sparse data structures, including neural representations. We demonstrate applications in both real-time and offline rendering and show that the additional stochastic error is minimal. Furthermore, this error is handled well by either spatiotemporal denoising or moderate pixel sampling rates.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式(shi)系統編譯器、體系結構和(he)綜(zong)合國際(ji)會議。 Publisher:ACM。 SIT:

The AI community is increasingly focused on merging logic with deep learning to create Neuro-Symbolic (NeSy) paradigms and assist neural approaches with symbolic knowledge. A significant trend in the literature involves integrating axioms and facts in loss functions by grounding logical symbols with neural networks and operators with fuzzy semantics. Logic Tensor Networks (LTN) is one of the main representatives in this category, known for its simplicity, efficiency, and versatility. However, it has been previously shown that not all fuzzy operators perform equally when applied in a differentiable setting. Researchers have proposed several configurations of operators, trading off between effectiveness, numerical stability, and generalization to different formulas. This paper presents a configuration of fuzzy operators for grounding formulas end-to-end in the logarithm space. Our goal is to develop a configuration that is more effective than previous proposals, able to handle any formula, and numerically stable. To achieve this, we propose semantics that are best suited for the logarithm space and introduce novel simplifications and improvements that are crucial for optimization via gradient-descent. We use LTN as the framework for our experiments, but the conclusions of our work apply to any similar NeSy framework. Our findings, both formal and empirical, show that the proposed configuration outperforms the state-of-the-art and that each of our modifications is essential in achieving these results.

The widely used stochastic gradient methods for minimizing nonconvex composite objective functions require the Lipschitz smoothness of the differentiable part. But the requirement does not hold true for problem classes including quadratic inverse problems and training neural networks. To address this issue, we investigate a family of stochastic Bregman proximal gradient (SBPG) methods, which only require smooth adaptivity of the differentiable part. SBPG replaces the upper quadratic approximation used in SGD with the Bregman proximity measure, resulting in a better approximation model that captures the non-Lipschitz gradients of the nonconvex objective. We formulate the vanilla SBPG and establish its convergence properties under nonconvex setting without finite-sum structure. Experimental results on quadratic inverse problems testify the robustness of SBPG. Moreover, we propose a momentum-based version of SBPG (MSBPG) and prove it has improved convergence properties. We apply MSBPG to the training of deep neural networks with a polynomial kernel function, which ensures the smooth adaptivity of the loss function. Experimental results on representative benchmarks demonstrate the effectiveness and robustness of MSBPG in training neural networks. Since the additional computation cost of MSBPG compared with SGD is negligible in large-scale optimization, MSBPG can potentially be employed an universal open-source optimizer in the future.

The gradient discretisation method (GDM) -- a generic framework encompassing many numerical methods -- is studied for a general stochastic Stefan problem with multiplicative noise. The convergence of the numerical solutions is proved by compactness method using discrete functional analysis tools, Skorohod theorem and the martingale representation theorem. The generic convergence results established in the GDM framework are applicable to a range of different numerical methods, including for example mass-lumped finite elements, but also some finite volume methods, mimetic methods, lowest-order virtual element methods, etc. Theoretical results are complemented by numerical tests based on two methods that fit in GDM framework.

Neural implicit surface representations have recently emerged as popular alternative to explicit 3D object encodings, such as polygonal meshes, tabulated points, or voxels. While significant work has improved the geometric fidelity of these representations, much less attention is given to their final appearance. Traditional explicit object representations commonly couple the 3D shape data with auxiliary surface-mapped image data, such as diffuse color textures and fine-scale geometric details in normal maps that typically require a mapping of the 3D surface onto a plane, i.e., a surface parameterization; implicit representations, on the other hand, cannot be easily textured due to lack of configurable surface parameterization. Inspired by this digital content authoring methodology, we design a neural network architecture that implicitly encodes the underlying surface parameterization suitable for appearance data. As such, our model remains compatible with existing mesh-based digital content with appearance data. Motivated by recent work that overfits compact networks to individual 3D objects, we present a new weight-encoded neural implicit representation that extends the capability of neural implicit surfaces to enable various common and important applications of texture mapping. Our method outperforms reasonable baselines and state-of-the-art alternatives.

Unobserved confounding is a fundamental obstacle to establishing valid causal conclusions from observational data. Two complementary types of approaches have been developed to address this obstacle: obtaining identification using fortuitous external aids, such as instrumental variables or proxies, or by means of the ID algorithm, using Markov restrictions on the full data distribution encoded in graphical causal models. In this paper we aim to develop a synthesis of the former and latter approaches to identification in causal inference to yield the most general identification algorithm in multivariate systems currently known -- the proximal ID algorithm. In addition to being able to obtain nonparametric identification in all cases where the ID algorithm succeeds, our approach allows us to systematically exploit proxies to adjust for the presence of unobserved confounders that would have otherwise prevented identification. In addition, we outline a class of estimation strategies for causal parameters identified by our method in an important special case. We illustrate our approach by simulation studies and a data application.

Applications of the ensemble Kalman filter to high-dimensional problems are feasible only with small ensembles. This necessitates a kind of regularization of the analysis (observation update) problem. We propose a regularization technique based on a new non-stationary, non-parametric spatial model on the sphere. The model termed the Locally Stationary Convolution Model is a constrained version of the general Gaussian process convolution model. The constraints on the location-dependent convolution kernel include local isotropy, positive definiteness as a function of distance, and smoothness as a function of location. The model allows for a rigorous definition of the local spectrum, which is required to be a smooth function of spatial wavenumber. We propose and test an ensemble filter in which prior covariances are postulated to obey the Locally Stationary Convolution Model. The model is estimated online in a two-stage procedure. First, ensemble perturbations are bandpass filtered in several wavenumber bands to extract aggregated local spatial spectra. Second, a neural network recovers the local spectra from sample variances of the filtered fields. In simulation experiments, the new filter was capable of outperforming several existing techniques. With small to moderate ensemble sizes, the improvement was substantial.

We study a variation of vanilla stochastic gradient descent where the optimizer only has access to a Markovian sampling scheme. These schemes encompass applications that range from decentralized optimization with a random walker (token algorithms), to RL and online system identification problems. We focus on obtaining rates of convergence under the least restrictive assumptions possible on the underlying Markov chain and on the functions optimized. We first unveil the theoretical lower bound for methods that sample stochastic gradients along the path of a Markov chain, making appear a dependency in the hitting time of the underlying Markov chain. We then study Markov chain SGD (MC-SGD) under much milder regularity assumptions than prior works (e.g., no bounded gradients or domain, and infinite state spaces). We finally introduce MC-SAG, an alternative to MC-SGD with variance reduction, that only depends on the hitting time of the Markov chain, therefore obtaining a communication-efficient token algorithm.

Many common types of data can be represented as functions that map coordinates to signal values, such as pixel locations to RGB values in the case of an image. Based on this view, data can be compressed by overfitting a compact neural network to its functional representation and then encoding the network weights. However, most current solutions for this are inefficient, as quantization to low-bit precision substantially degrades the reconstruction quality. To address this issue, we propose overfitting variational Bayesian neural networks to the data and compressing an approximate posterior weight sample using relative entropy coding instead of quantizing and entropy coding it. This strategy enables direct optimization of the rate-distortion performance by minimizing the $\beta$-ELBO, and target different rate-distortion trade-offs for a given network architecture by adjusting $\beta$. Moreover, we introduce an iterative algorithm for learning prior weight distributions and employ a progressive refinement process for the variational posterior that significantly enhances performance. Experiments show that our method achieves strong performance on image and audio compression while retaining simplicity.

The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司