Quantum computing is a highly abstract scientific discipline, which, however, is expected to have great practical relevance in future information technology. This forces educators to seek new methods to teach quantum computing for students with diverse backgrounds and with no prior knowledge of quantum physics. We have developed an online course built around an interactive quantum circuit simulator designed to enable easy creation and maintenance of course material with ranging difficulty. The immediate feedback and automatically evaluated tasks lowers the entry barrier to quantum computing for all students, regardless of their background.
Gesture synthesis has gained significant attention as a critical research field, aiming to produce contextually appropriate and natural gestures corresponding to speech or textual input. Although deep learning-based approaches have achieved remarkable progress, they often overlook the rich semantic information present in the text, leading to less expressive and meaningful gestures. In this letter, we propose GesGPT, a novel approach to gesture generation that leverages the semantic analysis capabilities of large language models , such as ChatGPT. By capitalizing on the strengths of LLMs for text analysis, we adopt a controlled approach to generate and integrate professional gestures and base gestures through a text parsing script, resulting in diverse and meaningful gestures. Firstly, our approach involves the development of prompt principles that transform gesture generation into an intention classification problem using ChatGPT. We also conduct further analysis on emphasis words and semantic words to aid in gesture generation. Subsequently, we construct a specialized gesture lexicon with multiple semantic annotations, decoupling the synthesis of gestures into professional gestures and base gestures. Finally, we merge the professional gestures with base gestures. Experimental results demonstrate that GesGPT effectively generates contextually appropriate and expressive gestures.
Artificial intelligence is revolutionizing architecture through text-to-image synthesis, converting textual descriptions into detailed visual representations. We explore AI-assisted floor plan design, focusing on technical background, practical methods, and future directions. Using tools like, Stable Diffusion, AI leverages models such as Generative Adversarial Networks and Variational Autoencoders to generate complex and functional floorplans designs. We evaluates these AI models' effectiveness in generating residential floor plans from text prompts. Through experiments with reference images, text prompts, and sketches, we assess the strengths and limitations of current text-to-image technology in architectural visualization. Architects can use these AI tools to streamline design processes, create multiple design options, and enhance creativity and collaboration. We highlight AI's potential to drive smarter, more efficient floorplan design, contributing to ongoing discussions on AI integration in the design profession and its future impact.
Dataset distillation is an advanced technique aimed at compressing datasets into significantly smaller counterparts, while preserving formidable training performance. Significant efforts have been devoted to promote evaluation accuracy under limited compression ratio while overlooked the robustness of distilled dataset. In this work, we introduce a comprehensive benchmark that, to the best of our knowledge, is the most extensive to date for evaluating the adversarial robustness of distilled datasets in a unified way. Our benchmark significantly expands upon prior efforts by incorporating a wider range of dataset distillation methods, including the latest advancements such as TESLA and SRe2L, a diverse array of adversarial attack methods, and evaluations across a broader and more extensive collection of datasets such as ImageNet-1K. Moreover, we assessed the robustness of these distilled datasets against representative adversarial attack algorithms like PGD and AutoAttack, while exploring their resilience from a frequency perspective. We also discovered that incorporating distilled data into the training batches of the original dataset can yield to improvement of robustness.
Split learning, as one of the most common architectures in vertical federated learning, has gained widespread use in industry due to its privacy-preserving characteristics. In this architecture, the party holding the labels seeks cooperation from other parties to improve model performance due to insufficient feature data. Each of these participants has a self-defined bottom model to learn hidden representations from its own feature data and uploads the embedding vectors to the top model held by the label holder for final predictions. This design allows participants to conduct joint training without directly exchanging data. However, existing research points out that malicious participants may still infer label information from the uploaded embeddings, leading to privacy leakage. In this paper, we first propose an embedding extension attack that manually modifies embeddings to undermine existing defense strategies, which rely on constraining the correlation between the embeddings uploaded by participants and the labels. Subsequently, we propose a new label obfuscation defense strategy, called `LabObf', which randomly maps each original one-hot vector label to multiple numerical soft labels with values intertwined, significantly increasing the difficulty for attackers to infer the labels. We conduct experiments on four different types of datasets, and the results show that LabObf can reduce the attacker's success rate to near random guessing while maintaining an acceptable model accuracy.
Gesture synthesis has gained significant attention as a critical research field, aiming to produce contextually appropriate and natural gestures corresponding to speech or textual input. Although deep learning-based approaches have achieved remarkable progress, they often overlook the rich semantic information present in the text, leading to less expressive and meaningful gestures. In this letter, we propose GesGPT, a novel approach to gesture generation that leverages the semantic analysis capabilities of large language models , such as ChatGPT. By capitalizing on the strengths of LLMs for text analysis, we adopt a controlled approach to generate and integrate professional gestures and base gestures through a text parsing script, resulting in diverse and meaningful gestures. Firstly, our approach involves the development of prompt principles that transform gesture generation into an intention classification problem using ChatGPT. We also conduct further analysis on emphasis words and semantic words to aid in gesture generation. Subsequently, we construct a specialized gesture lexicon with multiple semantic annotations, decoupling the synthesis of gestures into professional gestures and base gestures. Finally, we merge the professional gestures with base gestures. Experimental results demonstrate that GesGPT effectively generates contextually appropriate and expressive gestures.
Quantum computing holds the potential to solve problems that are practically unsolvable by classical computers due to its ability to significantly reduce time complexity. We aim to harness this potential to enhance ray casting, a pivotal technique in computer graphics for simplifying the rendering of 3D objects. To perform ray casting in a quantum computer, we need to encode the defining parameters of primitives into qubits. However, during the current noisy intermediate-scale quantum (NISQ) era, challenges arise from the limited number of qubits and the impact of noise when executing multiple gates. Through logic optimization, we reduced the depth of quantum circuits as well as the number of gates and qubits. As a result, the event count of correct measurements from an IBM quantum computer significantly exceeded that of incorrect measurements.
Optimal transport has been very successful for various machine learning tasks; however, it is known to suffer from the curse of dimensionality. Hence, dimensionality reduction is desirable when applied to high-dimensional data with low-dimensional structures. The kernel max-sliced (KMS) Wasserstein distance is developed for this purpose by finding an optimal nonlinear mapping that reduces data into $1$ dimensions before computing the Wasserstein distance. However, its theoretical properties have not yet been fully developed. In this paper, we provide sharp finite-sample guarantees under milder technical assumptions compared with state-of-the-art for the KMS $p$-Wasserstein distance between two empirical distributions with $n$ samples for general $p\in[1,\infty)$. Algorithm-wise, we show that computing the KMS $2$-Wasserstein distance is NP-hard, and then we further propose a semidefinite relaxation (SDR) formulation (which can be solved efficiently in polynomial time) and provide a relaxation gap for the SDP solution. We provide numerical examples to demonstrate the good performance of our scheme for high-dimensional two-sample testing.
As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.
With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.
Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.